[1] M.R. Besharati, M. Izadi, Semantics Based Compliance Solving, in: Fundam. Softw. Eng. (FSEN 2019), Student Poster Compet., 2019.
[2] M. Hashmi, G. Governatori, H.P. Lam, M.T. Wynn, Are we done with business process compliance: state of the art and challenges ahead, Knowl. Inf. Syst. 57 (2018) 79–133.
[3] O. Turetken, A. Elgammal, W.J. Van Den Heuvel, M.P. Papazoglou, Capturing compliance requirements: A pattern-based approach, IEEE Softw. 29 (2012) 28–36. https://doi.org/10.1109/MS.2012.45.
[4] C. Brandt, F. Santini, N. Kokash, F. Arbab, Modeling and simulation of selected operational IT risks in the banking sector, in: ESM 2012 - 2012 Eur. Simul. Model. Conf. Model. Simul. 2012, 2012: pp. 192–200.
[5] S. Ingolfo, A. Siena, A. Susi, A. Perini, J. Mylopoulos, Modeling laws with nomos 2, in: 2013 6th Int. Work. Requir. Eng. Law, RELAW 2013 - Proc., IEEE, 2013: pp. 69–71. https://doi.org/10.1109/RELAW.2013.6671350.
[6] G. Governatori, Z. Milosevic, S. Sadiq, Compliance checking between business processes and business contracts, in: Proc. - IEEE Int. Enterp. Distrib. Object Comput. Work. EDOC, 2006: pp. 221–232. https://doi.org/10.1109/EDOC.2006.22.
[7] A. Zasada, M. Fellmann, A Pattern-Based Approach to Transform Natural Text From Laws Into Compliance Controls in the Food Industry, LWA. 15 (2015).
[8] S. Almpani, P. Stefaneas, H. Boley, T. Mitsikas, P. Frangos, A rule-based model for compliance of medical devices applied to the European market, Int. J. Extrem. Autom. Connect. Healthc. 1 (2019) 56–78.
[9] J. Zhang, N.M. El-Gohary, Semantic-Based Logic Representation and Reasoning for Automated Regulatory Compliance Checking, J. Comput. Civ. Eng. 31 (2017) 04016037. https://doi.org/10.1061/(asce)cp.1943-5487.0000583.
[10] S. Bragaglia, Monitoring complex processes to verify system conformance: A declarative rule-based framework, (2013).
[11] S. Vuotto, Requirements-driven design of cyber-physical systems, in: CEUR Workshop Proc., 2018.
[12] C. Pek, V. Rusinov, S. Manzinger, M.C. Üste, M. Althoff., CommonRoad Drivability Checker: Simplifying the Development and Validation of Motion Planning Algorithms, in: IEEE Intell. Veh. Symp., 2020: pp. 1013–1020.
[13] B.O. Akinkunmi, F.M. Babalola, A norm enforcement mechanism for a time-constrained conditional normative framework, Auton. Agent. Multi. Agent. Syst. 34 (2020) 1–54. https://doi.org/10.1007/s10458-020-09441-2.
[14] F.J. Miandashti, M. Izadi, A.A.N. Shirehjini, S. Shirmohammadi, An Empirical Approach to Modeling User-System Interaction Conflicts in Smart Homes, IEEE Trans. Human-Machine Syst. 50 (2020) 573–583.
[15] S. Ranise, H. Siswantoro, Automated legal compliance checking by security policy analysis, in: Lect. Notes Comput. Sci. (Including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), 2017: pp. 361–372. https://doi.org/10.1007/978-3-319-66284-8_30.
[16] Elise GC Crawford, R.L. Kift, Keeping track of railway safety and the mechanisms for risk, Saf. Sci. 110 (2018) 195–205.
[17] J.P. Castellanos Ardila, Facilitating Automated Compliance Checking of Processes against Safety Standards, Mälardalen Unviersity, 2019.
[18] O. Kupferman, M.Y. Vardi., Model checking of safety properties, Form. Methods Syst. Des. 19 (2001) 291–314.
[19] N.B. Truong, K. Sun, G.M. Lee, Y. Guo, GDPR-Compliant Personal Data Management: A Blockchain-Based Solution, IEEE Trans. Inf. Forensics Secur. 15 (2020) 1746–1761. https://doi.org/10.1109/TIFS.2019.2948287.
[20] OCR, SUMMARY OF THE HIPAA PRIVACY RULE: HIPAA Compliance Assistance, Off. Civ. Rights. (2003).
[21] O. Lynskey, The foundations of EU data protection law, Oxford University Press, 2015.
[22] D. Butin, M. Chicote, D. Le Métayer, Log design for accountability, in: Proc. - IEEE CS Secur. Priv. Work. SPW 2013, IEEE, 2013: pp. 1–7. https://doi.org/10.1109/SPW.2013.26.
[23] F.A. Bukhsh, P.G.G. Queiroz, Conceptual Modeling for Corporate Social Responsibility: A Systematic Literature Review, in: Econ. Grids, Clouds, Syst. Serv. 16th Int. Conf., 2019: p. 218.
[24] R. Samavi, M.P. Consens, Publishing privacy logs to facilitate transparency and accountability, J. Web Semant. 50 (2018) 1–20.
[25] S. Gay, T. Badrick, J. Ross., “State of the art” for competency assessment in Australian medical laboratories, Accredit. Qual. Assur. 25 (2020) 323–327.
[26] J.P. Kesan, R.S. Gruner, Intellectual Property Compliance: Systematic Methods for Building and Using Intellectual Property, in: Cambridge Handb. Compliance, Cambridge University Press, 2020. https://doi.org/10.2139/ssrn.3506951.
[27] R.M. Abrantes-Metz, E. Prewitt, Antitrust Compliance 2.0: The Use of Structural Analysis and Empirical Screens to Detect Collusion and Corruption in Bidding Procurement Processes, Antitrust Chronicle, Compet. Policy Int. (2015).
[28] S.M. Baule, Evaluating the accessibility of special education cooperative websites for individuals with disabilities, TechTrends. 64 (2020) 50–56.
[29] J.P. Correia, J. Visser, Benchmarking technical quality of software products, in: Proc. - 15th Work. Conf. Reverse Eng. WCRE’08, IEEE, 2008: pp. 297–300. https://doi.org/10.1109/WCRE.2008.16.
[30] R. Baggen, J.P. Correia, K. Schill, J. Visser, Standardized code quality benchmarking for improving software maintainability, Softw. Qual. J. 20 (2012) 287–307. https://doi.org/10.1007/s11219-011-9144-9.
[31] V. Lenarduzzi, F. Lomio, S. Moreschini, D. Taibi, D.A. Tamburri, Software Quality for AI: Where We Are Now?, in: Int. Conf. Softw. Qual., 2021: pp. 43–53.
[32] S. De Craemer, J. Vercauteren, F. Fierens, W. Lefebvre, F.J.R. Meysman, Using Large-Scale NO2Data from Citizen Science for Air-Quality Compliance and Policy Support, Environ. Sci. Technol. 54 (2020) 11070–11078. https://doi.org/10.1021/acs.est.0c02436.
[33] C. Schreiber, Automated Sustainability Compliance Checking Using Process Mining and Formal Logic, in: 7th Int. Conf. ICT Sustain., 2020: pp. 181–184.
[34] L. Alonso-Virgós, J.P. Espada, O.S. Martínez, R.G. Crespo, Compliance and application tests of usability guidelines about giving information quickly and comprehensibly, Complex Intell. Syst. (2020) 1–21.
[35] M. Zhu, Y. Wang, Z. Pu, J. Hu, X. Wang, R. Ke, Safe, efficient, and comfortable velocity control based on reinforcement learning for autonomous driving, Transp. Res. Part C Emerg. Technol. 117 (2020) 102662.
[36] A. Christina, T.L. Fort, Finding the fit: Why compliance and ethics programs should seek to match individual and corporate values, Bus. Horiz. 63 (2020) 451–462.
[37] A. Gavine, F. Spillers, Toward a Disability-Centric Model of User Participation in Accessibility Efforts: Lessons from a Case Study of School Children, in: Int. Conf. Human-Computer Interact., 2020: pp. 76–86.
[38] R. Tahir, F. Arif, A measurement model based on usability metrics for mobile learning user interface for children, Int. J. E-Learning Educ. Technol. Digit. Media. 1 (2015) 16–31.
[39] L. Bajenaru, I.A. Marinescu, C. Dobre, G.I. Prada, C.S. Constantinou, Towards the development of a personalized healthcare solution for elderly: From user needs to system specifications, in: Proc. 12th Int. Conf. Electron. Comput. Artif. Intell. ECAI 2020, IEEE, 2020: pp. 1–6. https://doi.org/10.1109/ECAI50035.2020.9223254.
[40] M. Besharati, M. Izadi, Deciding About Semantic Complexity of Text By DAST Model, ArXiv. (2019).
[41] A.N. Jacobvitz, A.D. Hilton, D.J. Sorin, Multi-program benchmark definition, in: ISPASS 2015 - IEEE Int. Symp. Perform. Anal. Syst. Softw., 2015: pp. 72–82. https://doi.org/10.1109/ISPASS.2015.7095786.
[42] T. V. V. V. Prasad, R.B. Korrapati, Computerized Applications of Natural Language Processing in Digital Economy: A Review, Int. J. Eng. Manag. Res. 7 (2017) 239–241.
[43] E. Nash, J. Wiebensohn, R. Nikkilä, A. Vatsanidou, S. Fountas, R. Bill, Towards automated compliance checking based on a formal representation of agricultural production standards, Comput. Electron. Agric. 78 (2011) 28–37. https://doi.org/10.1016/j.compag.2011.05.009.
[44] J.C. Maxwell, A.I. Antón, Developing production rule models to aid in acquiring requirements from legal texts, in: Proc. IEEE Int. Conf. Requir. Eng., 2009: pp. 101–110. https://doi.org/10.1109/RE.2009.21.
[45] S. Ingolfo, Nomos 3: legal compliance of software requirements, University of Trento, 2015.
[46] L.R. De Silva, Towards controlling software architecture erosion through runtime conformance monitoring, University of St Andrews, 2014.
[47] S. Moaven, H. Ahmadi, J. Habibi, A. Kamandi, Decision Support System Environment for Software Architecture Style Selection (DESAS v1. 0), in: SEKE09, 2009: pp. 147–151.
[48] F. Nawaz, A. Mohsin, S. Fatima, N.K. Janjua, Rule-based multi-criteria framework for SaaS application architecture selection, in: IFIP Adv. Inf. Commun. Technol., 2015: pp. 129–138. https://doi.org/10.1007/978-3-319-25261-2_12.
[49] A. Alebrahim, S. Fassbender, M. Filipczyk, M. Goedicke, M. Heisel, Towards systematic selection of architectural patterns with respect to quality requirements, in: ACM Int. Conf. Proceeding Ser., ACM, 2015: pp. 1–20. https://doi.org/10.1145/2855321.2855362.
[50] M. del Mar Roldán-García, J. García-Nieto, A. Maté, J. Trujillo, J.F. Aldana-Montes, Ontology-driven approach for KPI meta-modelling, selection and reasoning, Int. J. Inf. Manage. (2019) 102018. https://doi.org/10.1016/j.ijinfomgt.2019.10.003.
[51] C. Preidel, A. Borrmann, Refinement of the visual code checking language for an automated checking of building information models regarding applicable regulations, in: Congr. Comput. Civ. Eng. Proc., 2017: pp. 157–165. https://doi.org/10.1061/9780784480823.020.
[52] N. Kokash, F. Arbab, Formal behavioral modeling and compliance analysis for Service-oriented systems, in: Lect. Notes Comput. Sci. (Including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), 2009: pp. 21–41. https://doi.org/10.1007/978-3-642-04167-9_2.
[53] A. Nowroozi, P. Teymoori, T. Ramezanifarkhani, M.R. Besharati, M. Izadi, A Crisis Situations Decision-Making Systems Software Development Process with Rescue Experiences, IEEE Access. 8 (2020). https://doi.org/10.1109/ACCESS.2020.2981789.
[54] S. Kokaly, R. Salay, M. Sabetzadeh, M. Chechik, T. Maibaum, Model management for regulatory compliance: A position paper, in: Proc. - 8th Int. Work. Model. Softw. Eng. MiSE 2016, ACM, 2016: pp. 74–80. https://doi.org/10.1145/2896982.2896985.
[55] A. Van Lamsweerde, Requirements engineering: From system goals to UML models to software, John Wiley & Sons, 2009.
[56] T. Kelly, R. Weaver, The Goal Structuring Notation-A Safety Argument Notation, in: Proc. Dependable Syst. Networks 2004 Work. Assur. Cases, 2004: p. 6.
[57] R. Dardar, B. Gallina, A. Johnsen, K. Lundqvist, M. Nyberg, Industrial experiences of building a safety case in compliance with ISO 26262, in: Proc. - 23rd IEEE Int. Symp. Softw. Reliab. Eng. Work. ISSREW 2012, 2012. https://doi.org/10.1109/ISSREW.2012.86.
[58] T.P. Kelly, Arguing safety: a systematic approach to managing safety cases, University of York, 1999.
[59] J. Zhang, N.M. El-Gohary, Integrating semantic NLP and logic reasoning into a unified system for fully-automated code checking, Autom. Constr. 73 (2017) 45–57. https://doi.org/10.1016/j.autcon.2016.08.027.
[60] A. Siena, A. Perini, A. Susi, J. Mylopoulos, A meta-model for modelling law-compliant requirements, in: 2009 2nd Int. Work. Requir. Eng. Law, RELAW 2009, IEEE, 2009: pp. 45–51. https://doi.org/10.1109/RELAW.2009.1.
[61] Christina Stratigaki, P. Loucopoulos, M. Nikolaidou, Designing a Meta Model as the Foundation for Compliance Capability, in: Int. Work. Capab. Bus. Informatics Organ. Conjunction with 16th IEEE Conf. Bus. Informatics, 2014.
[62] M.P. Papazoglou, Making business processes compliant to standards & regulations, in: Proc. - IEEE Int. Enterp. Distrib. Object Comput. Work. EDOC, 2011: pp. 3–13. https://doi.org/10.1109/EDOC.2011.37.
[63] W.J. Price, A Benchmark tutorial, IEEE Micro. 9 (1989) 28–43. https://doi.org/10.1109/40.45825.
[64] D. Patterson, For better or worse, benchmarks shape a field: technical perspective, Commun. ACM. 55 (2012) 104–104.
[65] R. Almeida, M. Vieira, Benchmarking the resilience of self-adaptive software systems: Perspectives and challenges, in: 6th Int. Symp. Softw. Eng. Adapt. Self-Managing Syst., 2011: pp. 190–195. https://doi.org/10.1145/1988008.1988035.
[66] M. Whitman, H. Mattord, Readings & Cases in Information Security: Law & Ethics, Nelson Education, 2010.
[67] K. Kanoun, L. Spainhower, Dependability benchmarking for computer systems, Wiley-IEEE Computer Society Press, 2008.
[68] J. Friginal, D. De Andrés, J.C. Ruiz, P. Gil, Towards benchmarking routing protocols in wireless mesh networks, Ad Hoc Networks. 9 (2011) 1374–1388. https://doi.org/10.1016/j.adhoc.2011.03.010.
[69] C. Le Goues, N. Holtschulte, E.K. Smith, Y. Brun, P. Devanbu, S. Forrest, W. Weimer, The ManyBugs and IntroClass Benchmarks for Automated Repair of C Programs, IEEE Trans. Softw. Eng. 41 (2015) 1236–1256. https://doi.org/10.1109/TSE.2015.2454513.
[70] W.F. Tichy, Should computer scientists experiment more?, Computer (Long. Beach. Calif). 31 (1998) 32–40. https://doi.org/10.1109/2.675631.
[71] and R.M. Jesus Friginal, David de Andrés, Juan-Carlos Ruiz, Using dependability benchmarks to support ISO/IEC SQuaRE, in: 2011 IEEE 17th Pacific Rim Int. Symp. Dependable Comput., 2011.
[72] C.A. Furia, M. Nordio, N. Polikarpova, J. Tschannen, AutoProof: auto-active functional verification of object-oriented programs, Int. J. Softw. Tools Technol. Transf. 19 (2017) 697–716. https://doi.org/10.1007/s10009-016-0419-0.
[73] Y. Wang, Stream Processing Systems Benchmark: StreamBench, Aalto University, 2016.
[74] B.W. Weide, M. Sitaraman, H.K. Harton, B. Adcock, P. Bucci, D. Bronish, W.D. Heym, J. Kirschenbaum, D. Frazier, Incremental benchmarks for software verification tools and techniques, in: Verif. Softw. Theor. Tools, Exp. (Lecture Notes Comput. Sci., 2008: pp. 84–98. https://doi.org/10.1007/978-3-540-87873-5-10.
[75] S. Sattari, M. Izadi, An exact algorithm for the minimum dilation triangulation problem, J. Glob. Optim. 69 (2017) 343–367. https://doi.org/10.1007/s10898-017-0517-x.
[76] J. Darmont, Data-Centric Benchmarking, Encycl. Inf. Sci. Technol. (2018) 1772–1782.
[77] K. Arnett, G. Templeton, D. Vance, Information security by words alone: The case for strong security policies, Int. J. Inf. Secur. Priv. 3 (2009) 84–89.
[78] E.O. JOSLIN, Describing workload for acquiring ADP equipment and software, Comput. Autom. 18 (1969) 36.
[79] and J.J.A. Edward O. Joslin, The validity of basing computer selections on benchmark results, Comput. Autom. 15 (1966) 22–23.
[80] J.R. Hillegass, Standardized benchmark problems measure computer performance, Comput. Autom. 15 (1966) 16–19.
[81] E.O. Joslin, R.F. Chairman-Hitti., Evaluation and performance of computers: application benchmarks: the key to meaningful computer evaluations, in: Proc. 1965 20th Natl. Conf., ACM, 1965: pp. 27–37.
[82] J. Yeh, A report on computer performance evaluation techniques, 1970.
[83] R.C. Camp, Benchmarking: The search for industry best practices that lead to superior performance, in: Benchmarking Search Ind. Best Pract. That Lead to Super. Perform., ASQC/Quality Resources, 1989. https://doi.org/10.5860/choice.27-2173.
[84] and S.J.K. Lawrence S. Pryor, How benchmarking goes wrong, Plan. Rev. 21 (1993) 6–53.
[85] S. Mohapatra, Information theory and best practices in the IT industry, Springer Science & Business Media, 2012. https://doi.org/10.1007/978-1-4614-3043-8.
[86] R. Scott, Benchmarking: A literature review, 2011.
[87] Y.A. Adewunmi, R. Iyagba, M. Omirin, Multi-sector framework for benchmarking in facilities management, Benchmarking. 24 (2017) 826–856. https://doi.org/10.1108/BIJ-10-2015-0093.
[88] M. Armbrust, A. Fox, R. Griffith, A.D. Joseph, R. Katz, A. Konwinski, G. Lee, D. Patterson, A. Rabkin, I. Stoica, M. Zaharia, A view of cloud computing, Commun. ACM. 53 (2010) 50–58. https://doi.org/10.1145/1721654.1721672.
[89] L. Gillam, B. Li, J. O’Loughlin, A.P.S. Tomar, Fair benchmarking for cloud computing systems, J. Cloud Comput. 2 (2013) 6. https://doi.org/10.1186/2192-113X-2-6.
[90] M. Zeuch, Handbook of human resources management, 2016. https://doi.org/10.1007/978-3-662-44152-7.
[91] S.E. Sim, S. Easterbrook, R.C. Holt, Using benchmarking to advance research: A challenge to software engineering, in: Proc. - Int. Conf. Softw. Eng., 2003. https://doi.org/10.1109/icse.2003.1201189.
[92] Z. Zhioua, Y. Roudier, R.A.-B.T. Kechiche, S. Short, Tracking Dependent Information Flows, in: ICISSP, 2017: pp. 179–189.
[93] N. Antunes, M. Vieira, Assessing and Comparing Vulnerability Detection Tools for Web Services: Benchmarking Approach and Examples, IEEE Trans. Serv. Comput. 8 (2015) 269–283. https://doi.org/10.1109/TSC.2014.2310221.
[94] M. Landhäußer, S. Weigelt, W.F. Tichy, NLCI: a natural language command interpreter, Autom. Softw. Eng. 24 (2017) 839–861. https://doi.org/10.1007/s10515-016-0202-1.
[95] N. Guarino, Formal ontology, conceptual analysis and knowledge representation, Int. J. Hum. - Comput. Stud. 43 (1995) 625–640. https://doi.org/10.1006/ijhc.1995.1066.
[96] S. Russell, P. Norvig, Artificial Intelligence A Modern Approach Third Edition, 2016. https://doi.org/10.1017/S0269888900007724.
[97] C. Giblin, A.Y. Liu, S. Müller, B. Pfitzmann, X. Zhou, Regulations Expressed As Logical Models ( REALM ), JURIX. (2005) 37–48.
[98] G.J. Nalepa, Modeling with Rules Using Semantic Knowledge Engineering, Springer, 2018.
[99] F. Yip, A.K.Y. Wong, N. Parameswaran, P. Ray, Towards robust and adaptive semantic-based Compliance Auditing, in: Proc. - IEEE Int. Enterp. Distrib. Object Comput. Work. EDOC, IEEE, 2007: pp. 181–188. https://doi.org/10.1109/EDOCW.2007.33.
[100] M. Fowler, Domain-specific languages, Pearson Education, 2010.
[101] C. Eastman, J. min Lee, Y. suk Jeong, J. kook Lee, Automatic rule-based checking of building designs, Autom. Constr. 18 (2009) 1011–1033. https://doi.org/10.1016/j.autcon.2009.07.002.
[102] A.S. Ismail, K.N. Ali, N.A. Iahad, A Review on BIM-based automated code compliance checking system, in: Int. Conf. Res. Innov. Inf. Syst. ICRIIS, IEEE, 2017: pp. 1–6. https://doi.org/10.1109/ICRIIS.2017.8002486.
[103] A. Elgammal, O. Turetken, W.J. Van Den Heuvel, Using patterns for the analysis and resolution of compliance violations, in: Int. J. Coop. Inf. Syst., 2012: pp. 31–54. https://doi.org/10.1142/S0218843012400023.
[104] G.D. Bhatt, Knowledge management in organizations: Examining the interaction between technologies, techniques, and people, J. Knowl. Manag. 5 (2001) 68–75. https://doi.org/10.1108/13673270110384419.
[105] D.H. Jonassen, R.M. Marra, Concept mapping and other formalisms as mindtools for representing knowledge, ALT-J. 2 (1994) 50–56. https://doi.org/10.1080/0968776940020107.
[106] H.C.G. Johnsen, The new natural resource: Knowledge development, society and economics, Routledge, 2016.
[107] A. Ortony, The representation of knowledge in memory, in: W.E.M. R.C. Anderson, R. J. Spiro (Ed.), Sch. Acquis. Knowl., Lawrence Erlbaum Associates, 1977: pp. 99–135.
[108] M. Sato, Classical Brouwer-Heyting-Kolmogorov interpretation, in: Algorithmic Learn. Theory, Springer Berlin Heidelberg, 1997: pp. 176–196.
[109] V.R. Basili, G. Caldiera, H.D. Rombach, The goal question metric approach, Encycl. Softw. Eng. (1994) 528–532.
[110] H. Hu, S. Wang, C.P. Bezemer, A.E. Hassan, Studying the consistency of star ratings and reviews of popular free hybrid Android and iOS apps, Empir. Softw. Eng. (2019). https://doi.org/10.1007/s10664-018-9617-6.
[111] R. Arianto, F.L. Gaol, E. Abdurachman, Y. Heryadi, H.L.H.S. Warnars, B. Soewito, H. Perez-Sanchez, Quality measurement of android messaging application based on user experience in microblog, in: Proc. - 2017 Int. Conf. Appl. Comput. Commun. Technol. ComCom 2017, IEEE, 2017: pp. 1–5. https://doi.org/10.1109/COMCOM.2017.8167099.
[112] C.H. Lien, Y. Cao, X. Zhou, Service quality, satisfaction, stickiness, and usage intentions: An exploratory evaluation in the context of WeChat services, Comput. Human Behav. 68 (2017) 403–410. https://doi.org/10.1016/j.chb.2016.11.061.
[113] H. Hu, Studying the Perceived Quality Consistency of Cross-Platform Mobile Apps, Queen’s University, 2017.
[114] C.M. Jongerius, Quantifying Chatbot Performance by using Data Analytics, Utrecht University, 2018.
[115] E. Vaziripour, R. Farahbakhsh, M. O’Neill, J. Wu, K. Seamons, D. Zappala, A Survey Of the Privacy Preferences and Practices of Iranian Users of Telegram, in: Work. Usable Secur., 2018. https://doi.org/10.14722/usec.2018.23033.
[116] A. Hashemi, M.A. Zare Chahooki, Telegram group quality measurement by user behavior analysis, Soc. Netw. Anal. Min. 9 (2019) 33. https://doi.org/10.1007/s13278-019-0575-9.
[117] H. Kermani, A. Mozaffari, The study of Iranian users’ reasons in preferring Telegram on other Instant Messaging Applications, MEDIA Stud. 13 (2018) 7–20.
[118] G. Büyüközkan, C.A. Havle, O. Feyzioğlu, A new digital service quality model and its strategic analysis in aviation industry using interval-valued intuitionistic fuzzy AHP, J. Air Transp. Manag. 86 (2020) 101817. https://doi.org/10.1016/j.jairtraman.2020.101817.
[119] C. Yue, An intuitionistic fuzzy projection-based approach and application to software quality evaluation, Soft Comput. 24 (2020) 429–443.
[120] M. Khan, M.D. Ansari, Multi-criteria software quality model selection based on divergence measure and score function, J. Intell. Fuzzy Syst. (2020) 1–10. https://doi.org/10.3233/JIFS-191153.
[121] Y. Schneider, A. Busch, A. Koziolek, Using informal knowledge for improving software quality trade-off decisions, in: Lect. Notes Comput. Sci. (Including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), Springer, 2018: pp. 265–283. https://doi.org/10.1007/978-3-030-00761-4_18.
[122] D.E. Perry, S.E. Sim, S.M. Easterbrook, Case studies for software engineers, in: Proc. - 28th Int. Conf. Softw. Eng., 2006: pp. 1045–1046. https://doi.org/10.1109/icse.2004.1317512.
[123] M.R. Besharati, M. Izadi, IR-QUMA, 2020. https://doi.org/http://dx.doi.org/10.17632/d89gphmnsk.3.
[124] R. Likert, A technique for the measurement of attitudes, Arch. Psychol. (1932).
[125] L. Gren, R. Torkar, R. Feldt, The prospects of a quantitative measurement of agility: A validation study on an agile maturity model, J. Syst. Softw. 107 (2015) 38–49. https://doi.org/10.1016/j.jss.2015.05.008.
[126] M. Izadi, Model checking of component connectors, Leiden University, 2011.