1. Rowley, M.J., et al., Effect of graded doses of ionizing radiation on the human testis. Radiat Res, 1974. 59(3): p. 665-78
2. Hahn, E.W., S.M. Feingold, and L. Nisce, Aspermia and recovery of spermatogenesis in cancer patients following incidental gonadal irradiation during treatment: a progress report. Radiology, 1976. 119(1): p. 223-5.http://dx.doi.org/10.1148/119.1.223
3. Bai, H., et al., CBLB502, a Toll-like receptor 5 agonist, offers protection against radiation-induced male reproductive system damage in mice. Biol Reprod, 2019. 100(1): p. 281-291.http://dx.doi.org/10.1093/biolre/ioy173
4. Ma, Y. and X. Jia, Polydatin Alleviates Radiation-Induced Testes Injury by Scavenging ROS and Inhibiting Apoptosis Pathways. Medical science monitor : international medical journal of experimental and clinical research, 2018. 24: p. 8993-9000.http://dx.doi.org/10.12659/MSM.913725
5. Pickles, T., P. Graham, and I. Members of the British Columbia Cancer Agency Prostate Cohort Outcomes, What happens to testosterone after prostate radiation monotherapy and does it matter? J Urol, 2002. 167(6): p. 2448-52
6. Barazani, Y., et al., Lifestyle, environment, and male reproductive health. The Urologic clinics of North America, 2014. 41(1): p. 55-66.http://dx.doi.org/10.1016/j.ucl.2013.08.017
7. Schmidt, K.L.T., et al., Assisted reproduction in male cancer survivors: fertility treatment and outcome in 67 couples. Human reproduction (Oxford, England), 2004. 19(12): p. 2806-2810
8. van Beek, M.E., J.A. Davids, and D.G. de Rooij, Variation in the sensitivity of the mouse spermatogonial stem cell population to fission neutron irradiation during the cycle of the seminiferous epithelium. Radiation research, 1986. 108(3): p. 282-295
9. Bai, H., et al., CBLB502, a Toll-like receptor 5 agonist, offers protection against radiation-induced male reproductive system damage in mice. Biology of reproduction, 2019. 100(1): p. 281-291.http://dx.doi.org/10.1093/biolre/ioy173
10. Ding, J., et al., Protection of murine spermatogenesis against ionizing radiation-induced testicular injury by a green tea polyphenol. Biology of reproduction, 2015. 92(1): p. 6.http://dx.doi.org/10.1095/biolreprod.114.122333
11. Du, C., et al., Mitochondrial ROS and radiation induced transformation in mouse embryonic fibroblasts. Cancer biology & therapy, 2009. 8(20): p. 1962-1971
12. Wu, X., et al., Nicotine promotes atherosclerosis via ROS-NLRP3-mediated endothelial cell pyroptosis. Cell death & disease, 2018. 9(2): p. 171.http://dx.doi.org/10.1038/s41419-017-0257-3
13. Shirazi, A., G. Ghobadi, and M. Ghazi-Khansari, A radiobiological review on melatonin: a novel radioprotector. Journal of radiation research, 2007. 48(4): p. 263-272
14. Rakici, S.Y., et al., Pelvic Radiation-Induced Testicular Damage: An Experimental Study at 1 Gray. Syst Biol Reprod Med, 2020. 66(2): p. 89-98.http://dx.doi.org/10.1080/19396368.2019.1679909
15. Chuai, Y., et al., Hydrogen-rich saline attenuates radiation-induced male germ cell loss in mice through reducing hydroxyl radicals. The Biochemical journal, 2012. 442(1): p. 49-56.http://dx.doi.org/10.1042/BJ20111786
16. Qian, L., et al., Radioprotective effect of hydrogen in cultured cells and mice. Free radical research, 2010. 44(3): p. 275-282.http://dx.doi.org/10.3109/10715760903468758
17. Boateng, F. and W. Ngwa, Delivery of Nanoparticle-Based Radiosensitizers for Radiotherapy Applications. International journal of molecular sciences, 2019. 21(1).http://dx.doi.org/10.3390/ijms21010273
18. Musielak, M., et al., The Role of Gold Nanorods in the Response of Prostate Cancer and Normal Prostate Cells to Ionizing Radiation-In Vitro Model. International journal of molecular sciences, 2020. 22(1).http://dx.doi.org/10.3390/ijms22010016
19. Li, L., et al., Magnesium Hydride-Mediated Sustainable Hydrogen Supply Prolongs the Vase Life of Cut Carnation Flowers via Hydrogen Sulfide. Frontiers in plant science, 2020. 11: p. 595376.http://dx.doi.org/10.3389/fpls.2020.595376
20. Minutoli, L., et al., ROS-Mediated NLRP3 Inflammasome Activation in Brain, Heart, Kidney, and Testis Ischemia/Reperfusion Injury. Oxid Med Cell Longev, 2016. 2016: p. 2183026.http://dx.doi.org/10.1155/2016/2183026
21. Nogita, K., et al., Evidence of the hydrogen release mechanism in bulk MgH2. Scientific reports, 2015. 5: p. 8450.http://dx.doi.org/10.1038/srep08450
22. Karna, K.K., et al., Cross-talk between ER stress and mitochondrial pathway mediated adriamycin-induced testicular toxicity and DA-9401 modulate adriamycin-induced apoptosis in Sprague-Dawley rats. Cancer Cell Int, 2019. 19: p. 85.http://dx.doi.org/10.1186/s12935-019-0805-2
23. Nuszkiewicz, J., A. Woźniak, and K. Szewczyk-Golec, Ionizing Radiation as a Source of Oxidative Stress-The Protective Role of Melatonin and Vitamin D. International journal of molecular sciences, 2020. 21(16).http://dx.doi.org/10.3390/ijms21165804
24. Said, R.S., H.A. Mohamed, and D.H. Kassem, Alpha-lipoic acid effectively attenuates ionizing radiation-mediated testicular dysfunction in rats: Crosstalk of NF-ĸB, TGF-β, and PPAR-ϒ pathways. Toxicology, 2020. 442: p. 152536.http://dx.doi.org/10.1016/j.tox.2020.152536
25. Liu, Z., et al., Monophosphoryl lipid A alleviated radiation-induced testicular injury through TLR4-dependent exosomes. Journal of cellular and molecular medicine, 2020. 24(7): p. 3917-3930.http://dx.doi.org/10.1111/jcmm.14978
26. Pisoschi, A.M. and A. Pop, The role of antioxidants in the chemistry of oxidative stress: A review. European journal of medicinal chemistry, 2015. 97: p. 55-74.http://dx.doi.org/10.1016/j.ejmech.2015.04.040
27. Jiang, Z., et al., Protection by hydrogen against gamma ray-induced testicular damage in rats. Basic & clinical pharmacology & toxicology, 2013. 112(3): p. 186-191.http://dx.doi.org/10.1111/bcpt.12016
28. Amaral, A., et al., Mitochondria functionality and sperm quality. Reproduction (Cambridge, England), 2013. 146(5): p. R163-R174.http://dx.doi.org/10.1530/REP-13-0178
29. Kumar, D., et al., Semen abnormalities, sperm DNA damage and global hypermethylation in health workers occupationally exposed to ionizing radiation. PloS one, 2013. 8(7): p. e69927.http://dx.doi.org/10.1371/journal.pone.0069927
30. Leung, C.T., et al., Low-Dose Radiation Can Cause Epigenetic Alterations Associated With Impairments in Both Male and Female Reproductive Cells. Frontiers in genetics, 2021. 12: p. 710143.http://dx.doi.org/10.3389/fgene.2021.710143
31. Vorobtsova, I.E., Irradiation of male rats increases the chromosomal sensitivity of progeny to genotoxic agents. Mutagenesis, 2000. 15(1): p. 33-38
32. Zheng, Y., et al., The influence of retinoic acid-induced differentiation on the radiation response of male germline stem cells. DNA repair, 2018. 70: p. 55-66.http://dx.doi.org/10.1016/j.dnarep.2018.08.027
33. Wang, T.-Q., X. Zhang, and J. Yang, Dynamic Protective Effect of Chinese Herbal Prescription, Yiqi Jiedu Decoction, on Testis in Mice with Acute Radiation Injury. Evidence-based complementary and alternative medicine : eCAM, 2021. 2021: p. 6644093.http://dx.doi.org/10.1155/2021/6644093
34. Ji, H.-J., et al., Wuzi Yanzong pill, a Chinese polyherbal formula, alleviates testicular damage in mice induced by ionizing radiation. BMC complementary and alternative medicine, 2016. 16(1): p. 509
35. Zagars, G.K. and A. Pollack, Serum testosterone levels after external beam radiation for clinically localized prostate cancer. International journal of radiation oncology, biology, physics, 1997. 39(1): p. 85-89
36. Belling, K.C., et al., Transcriptome profiling of mice testes following low dose irradiation. Reproductive biology and endocrinology : RB&E, 2013. 11: p. 50.http://dx.doi.org/10.1186/1477-7827-11-50
37. Guitton, N., et al., Regulatory influence of germ cells on sertoli cell function in the pre-pubertal rat after acute irradiation of the testis. International journal of andrology, 2000. 23(6): p. 332-339
38. Ramalho-Santos, J., et al., Mitochondrial functionality in reproduction: from gonads and gametes to embryos and embryonic stem cells. Human reproduction update, 2009. 15(5): p. 553-572.http://dx.doi.org/10.1093/humupd/dmp016
39. Gross, A., J.M. McDonnell, and S.J. Korsmeyer, BCL-2 family members and the mitochondria in apoptosis. Genes & development, 1999. 13(15): p. 1899-1911
40. Qiu, X., et al., Hydrogen attenuates radiation-induced intestinal damage by reducing oxidative stress and inflammatory response. International immunopharmacology, 2020. 84: p. 106517.http://dx.doi.org/10.1016/j.intimp.2020.106517
41. Parshad, R., et al., Chromosomal radiosensitivity of human tumor cells during the G2 cell cycle period. Cancer research, 1984. 44(12 Pt 1): p. 5577-5582
42. Sak, A., et al., Effect of separase depletion on ionizing radiation-induced cell cycle checkpoints and survival in human lung cancer cell lines. Cell proliferation, 2008. 41(4): p. 660-670.http://dx.doi.org/10.1111/j.1365-2184.2008.00540.x
43. Brugarolas, J., et al., Inhibition of cyclin-dependent kinase 2 by p21 is necessary for retinoblastoma protein-mediated G1 arrest after gamma-irradiation. Proceedings of the National Academy of Sciences of the United States of America, 1999. 96(3): p. 1002-1007
44. Luo, T., et al., Matrine compromises mouse sperm functions by a [Ca(2+)]i-related mechanism. Reprod Toxicol, 2016. 60: p. 69-75.http://dx.doi.org/10.1016/j.reprotox.2016.02.003