
Springer Nature 2021 LATEX template

Selection of Building Blocks for Adaptive

Grammatical Evolution in PSO

Jyotheesh Gaddam1*, Jan Carlo Barca1†, Richard Dazeley1†

and Maia Angelova1†

1Data to Intelligence (D2I) Research Centre, School of
Information Technology, Deakin University, Burwood,

Melbourne, 3125, VIC, Australia.

*Corresponding author(s). E-mail(s): jgaddam@deakin.edu.au;
Contributing authors: jan.barca@deakin.edu.au;

richard.dazeley@deakin.edu.au; maia.a@deakin.edu.au;
†These authors contributed equally to this work.

Abstract

In this study, we used grammatical evolution to develop a customised
particle swarm optimiser by incorporating adaptive building blocks.
This makes the algorithm self-adaptable to the problem instance. Our
objective is to provide the means to automatically generate novel
population-based meta-heuristics by scoring the building blocks. We pro-
pose a new self-adapting algorithm by adaptive selection and scoring of
the building blocks to solve multiple problem instances by reducing com-
putation time and iteration count. To achieve our objective, we ranked
building blocks that were extracted from a broad set of existing parti-
cle swarm optimisers and scored these during the evolutionary process.
These scores were provided as an input to the evolutionary process that
enabled the replacement of blocks of evolved solutions in cases where they
were unable to improve the overall fitness. Our numerical experiments
demonstrated that the proposed algorithm with adaptive building blocks
reduced the iteration count and computation time with respect to PSO.

Keywords: Particle Swarm Optimisation, Swarm Intelligence, Evolution
Strategies

1

Springer Nature 2021 LATEX template

2 Selection of Building Blocks for Adaptive Grammatical Evolution in PSO

1 Introduction

Particle Swarm Optimisation (PSO) is one of the most popular nature-
inspired meta-heuristic optimisation algorithms developed by [1]. Since its
development, PSO is one of the widely used optimisation technique in solving
continuous, discrete, constrained and unconstrained problems. Optimisation
problems in real-world situations can be divided into a few categories. The
first type is discrete or continuous. In discrete optimisation, a problem may
consist of a finite number of points to be ordered in the most efficient way. An
example is finding an optimal path between a number of points. On the other
hand, a continuous optimisation problem deals with a set of real values. The
second type occurs if the problem were single- or multi-objective. The third
type of problem can be unconstrained or constrained. In addition, problems
can be either static (don’t change over time) or dynamic, which means they
have at least one component that is likely to change over time.

Research on dynamic optimisation has become a challenging research
topic. The objective function, constraints, or both change over time in
dynamic optimisation. To solve dynamic problems, various approaches have
been used, including Genetic Programming, Mathematical Optimisation, and
Bayesian Optimisation. Researchers also developed hybrid approaches to fur-
ther improve PSO by introducing combinations with Genetic Algorithms [2],
Simulated Annealing [3], Ant Colony Optimisation [4], Cuckoo Search [5], Arti-
ficial Bee Colony [6], Artificial Immune Systems [7], Bat Algorithm [8], Firefly
Algorithm [9] and Glow Worm Swarm Optimisation [10]. With the hybridi-
sation of the PSO algorithms, they overcome the issues of exploration and
exploitation (means a decision to take when to explore and when to exploit),
trapping local minima, convergence rate, uni-modal and multi-modal optimi-
sation. But still these algorithms lack of continuous self-adaption capability to
improve and solve different problem instances.

Among these, Evolutionary and Swarm algorithms are two important
algorithms belonging to the nature-inspired meta-heuristics known as an evo-
lutionary computation [11]. Popular hybridisation approaches in PSO are with
Genetic Algorithms by sharing the common framework. These meta-heuristics
shares the following two characteristics: population-based presentation for the
candidate solutions, and an iterative procedure with a stochastic exploration
[11]. Grammatical Evolution (GE) is an evolutionary search technique similar
to genetic programming [12], inspired by the process of biological evolution.
Several research works on PSO and GE use Building Blocks (BBs) to solve
different problem instances.

The algorithm usually involves BBs in designing a search process suitable
for a situation depending on the constraints and decision variables [13]. The
BBs is a set of constraints or rules. In what follows, the BBs will be identified
and provided by us to the system to build an algorithm. In many algorithms,
we observed that the random selection of BBs is made every time in initialising
the search process. This random initialisation may consume more time in the

Springer Nature 2021 LATEX template

Selection of Building Blocks for Adaptive Grammatical Evolution in PSO 3

search process. Moreover, we cannot guarantee that the provided blocks will
be efficient in finding the best solution [14].

In dynamic environments, changes occur with data, inputs and objective
function (e.g., stock market). The search process must adapt to the changes
and come up with the best possible solution. Heuristic selection, using previous
best-performed blocks to solve new problems, is not very useful. Moreover,
selecting the existing low-level heuristics reduces the performance in applied
scenarios and raises the Red Queen Effect. The ever-changing fitness landscape
caused by the species competition makes the system dynamic more complex
and is referred to as ”Red Queen Effect” [15]. Using the same process of solving
in different situations does not yield positive results and even misguides the
search process.

The aim of the study is to develop a new algorithm with continuous self-
adaption and improving the algorithm to solve different problem instances,
GE with Adaptive BBs (GEABB), with the integration of PSO. Based on
the existing works, we designed a hybrid model that self-adapts to different
problem instances without changing its initially provided BBs set. We address
the following research questions:

• How can GEABB dynamically change and control BBs in solving different
problem instances?

• Can GEABB adapt to different problem instances without changing the
initial set of BBs?

• Does GEABB reduce the iteration count and computational time compared
to standard PSO?

The paper is structured as follows: Preliminary works are discussed in
Section 2, the integration of PSO and GE is described in Section 3, while the
BBs selection method is described in Section 4. A detail description of the
proposed method is given in Section 5. The experimental setup is given in
Section 6 and the performance of the algorithm measured as obtained from
the conducted experiments is discussed in Section 7. Section 8 concludes the
paper as well as the possible future research work that can be done.

2 Preliminary Works

Many variants of PSO have been developed for solving different kind of problem
instances. One such variant is focusing on BBs [16]. As mentioned above, BBs
are the sets of rules or processes that are the primary source for building the
algorithm involved in the search process. In PSO, BBs such as inertia weight,
constriction coefficient, acceleration coefficient, topologies and population size
have a great influence on the performance [17].

Researchers have used various BBs and implemented different strategies
to improve the PSO and evolutionary algorithms [18]. This shows the impor-
tance of BBs in solving different problem instances. Parameter tuning and

Springer Nature 2021 LATEX template

4 Selection of Building Blocks for Adaptive Grammatical Evolution in PSO

parameter control are the two types of BBs settings in the literature of evo-
lutionary algorithms [19]. During parameter tuning, the BBs are configured
before implementing the optimisation process. These tuned values of the BBs
can be used in a variety of optimisation processes. Some of the recent parameter
tuning methods are: Iterated Racing for Automatic Algorithm Configuration
(IRACE) [20], ANOVA - a racing algorithm for configuring meta-heuristics
[21], and the F-Race Algorithm [22]

As the optimal value may differ at different stages of a run, static parameter
tuning may result in poor performance. The optimisation process starts with
initial configuration of BBs and then the values change dynamically during
the iteration process. This leads to parameter control, introduced by [19]. It
is based on what is changes in BBs and when is the change made and how is
the change made. BBs can be controlled by applying rules or adaptively. The
deterministic rule is used to control the BBs value in the iterations. This gives
better performance of the optimisation process for some cases but not in all
cases.

In [14], have proved that a basic PSO gives satisfactory performance when
its BBs are tuned rightly. BBs plays a prominent role in the algorithm per-
formance and distinct settings are require for a problem instance as well as
for different optimisation problem instances. Various PSO variants focusing on
BBs is presented and discussed by [17]. The following BBs were observed as
perspectives of development in PSO algorithm. The inertia weight is the ini-
tialisation of swarm particles with velocity [23]. The constriction factor ensures
the trade-off between exploration and exploitation [24]. Cognition and social
velocity models of the swarm indicate the attraction of the particles towards
the global best in the feasible neighbourhood and usually converge faster with
predominantly exploratory behaviour [25]. Cognitive and social acceleration
coefficients are weights that capture how much a particle should weigh moving
towards its cognitive attractor or its social attractor [26]. The swarm topologies
establish swarm particles connectivity of its members to the others. Analysis
of convergence shows that particles converge to a single point which is a cog-
nitive attractor. Velocity and position update the mechanisms of the swarm
particles. Multiple swarms can deal with multi-modal problems where multi-
ple optima exist. Quantum particles are used as a guaranteed search method
for finding a global convergence and artificial best particles [13].

The research gap among all these approaches is that they are not contin-
uously self-adapting and improving the algorithm to solve different problem
instances. Based on the identified BBs in PSO and the popular hybridisation
method with GE, we build on these existing works and propose a new approach
focusing on continuous self-adaption. With this implementation, the PSO with
GE will be capable of self-adapt its own parameter settings in solving different
problem instances without any manual interpretations. As best of our knowl-
edge, this is the first approach introducing with the concept of scoring and
ranking BBs in-order to help the algorithm self-adaptable to different problem
instances.

Springer Nature 2021 LATEX template

Selection of Building Blocks for Adaptive Grammatical Evolution in PSO 5

3 PSO with GE

GE is a grammar-based form of genetic programming. It can operate on
different data types, and grammar is selectable to make GE beneficial over tra-
ditional genetic programming [27]. GE is governed by the Backus-Naur Form
(BNF) grammar [28], a notation technique that is used to define the syntax for
communicating languages in computing, computer programming, instruction
sets, and communication protocols. This grammar makes GE flexible across
several problem domains with robust performance [29]. GE adopts a popu-
lation of either linear genotypic integer strings or binary strings, which are
transformed into functional phenotype through a genotype-to-phenotype map-
ping using grammar - a set of rules that describes the syntax of the program,
a fitness function - assess the quality (the cost or fitness) of a program, and a
search engine - to find the optimal solution for the generated program [29].

3.1 Grammar

GE uses the BNF grammar to generate programs (algorithms) to solve a prob-
lem [28]. The BNF grammar is represented by a tuple containing four sets,
< T,N, S, P >, where T is the set of terminals, N is the set of non-terminals,
S is the start symbol (a member of N), and P is a set of production rules [30].
The swarm particles consist of a vector of integer numbers C (named codons)
which are decoded using the grammar defined in a tuple as stated above and
passed to a mapper in the GE.

3.2 Search Engine

PSO imitates the social behaviour of a flock of flying birds to solve complex
scientific problems [31] and is widely used to solve engineering problems [32].
The swarm particles (candidate solutions) fly in an dimensional search space,
n ≥ 1. Each particle has two associated properties: a current position and a
velocity. Each particle remembers the best location in the search space found
so far (Pbest), and knows the best location found to date by all particles in
the population (Gbest). Therefore, at each step, the velocity of each particle
is a function of its own history and the social influence of its peer group [13].
For each particle, the velocity vector vi and position vector xi is updated by
Eq. (1) and Eq. (2) respectively.

vij(t+ 1) = wvij(t) + r1(t)C1(Pbestij(t)− xij(t)) + r2(t)C2(Gbest(t)− xij(t))
(1)

xij(t+ 1) = xij(t) + vij(t+ 1), (2)

where r1 and r2 are random vectors with magnitudes, r1 ≥ 0, r2 ≤ 1, regen-
erated after every velocity update. C1 and C2 are the weights associated with
Pbest and Gbest. w is an inertia coefficient, usually between 0.8 and 1.2. vij(t)
is the velocity of the particle at time t, and xij(t) is the position of the particle

Springer Nature 2021 LATEX template

6 Selection of Building Blocks for Adaptive Grammatical Evolution in PSO

at time t, i = 1, 2, . . . , n, j = 1, 2, . . . , n. Pbestij(t) is the particle’s individual
best solution found at time t, and Gbest(t) is the swarm’s best solution found
at time t.

Pbest and Gbest fitnesses and positions are updated by comparing the
newly evaluated fitness against the previous Pbest and Gbest fitnesses as
necessary. The objective function can be selected as maximisation or min-
imisation depending on the objective of the search engine. If the objective is
minimisation, the objective function, min Pbest is updated by Eq. (3),

Cost(xi(t+ 1)) < Cost(Pbesti(t))→ Pbesti(t+ 1) = xi(t+ 1). (3)

In case of maximisation the objective function, max Pbest is updated by Eq.
(4),

Cost(xi(t+ 1)) > Cost(Pbesti(t))→ Pbesti(t+ 1) = xi(t+ 1). (4)

3.3 Mapper

The mapper function converts a genotype (individual solutions) into a pheno-
type (evaluable solution to the problem) [33]. The conversion from genotype
to phenotype is done using Eq. (5).

Rule = C%R, (5)

where C is the codon integer value, R is the number of rule choices for the
current non-terminal symbol, and % is the modulus rule [34].

Initially, the mapper function begins by mapping the starting symbol into
terminals. It converts each codon to its corresponding integer value. To use it,
one first converts all codon values to integers, then, starting from the starting
symbol, applies the mapping rule to convert the leftmost non-terminal into a
terminal until all non-terminals have been converted into terminals.

4 Hybrid Approach for BBs Selection

For the BBs selection we make use of two selection approaches. The first,
elitist selection, is a selection technique that selects a small number of BBs
with the highest scores that avoids the crossover and mutation operations in
the evolutionary process. The proposed BBs set is provided in Table 1, the
ranking process is further explained in Section 5.

The second approach, fitness proportionate selection, also known as
roulette wheel selection, is a genetic operator for choosing potentially use-
ful recombination solutions in evolutionary algorithm. In the Roulette Wheel
selection the blocks are given a probability Pi of being selected, calculated by

Springer Nature 2021 LATEX template

Selection of Building Blocks for Adaptive Grammatical Evolution in PSO 7

Eq. (6),

Pi =
1

N − 1
∗

(
1− Si∑

j∈BBs Sj

)
, (6)

where Si is the value of scores for the individual block, N is the number of BBs,
i = 1, .., N . In each evolution, the algorithm calculates the probability for each
block based on the scores. Because the scores change after each iteration, the
algorithm calculates the probability of each block in each evolution. The BBs
are represented as a circular wheel using the probability values (percentages),
and a fixed point is chosen on the wheel’s circumference. After rotating, the
wheel stops at a point, which determines the BB chosen for the evolutionary
process.

In order to achieve better performance with GEABB algorithm, we devel-
oped a hybrid approach, by combining the elitist selection and the roulette
wheel selection in one.

The hybrid approach selects BBs based on high ranking (from the elitist
selection), Parent 1 and probability (from the roulette wheel selection), Parent
2. Crossover operation is applied on Parent i, i=1,2, with 0.75 probability to
generate five children. This probability and number of children were found by
tuning using IRACE. The generated children will carry out the evolutionary
process in finding the optimal solution based on the objective function defined
as either minimisation or maximisation.

5 Proposed Framework

The proposed system architecture in Figure 1 gives an overview of GE
integrated with PSO and scoring function for BB recommendation. The
pseudo-code for the proposed framework, is shown in Algorithm 1.

Springer Nature 2021 LATEX template

8 Selection of Building Blocks for Adaptive Grammatical Evolution in PSO

Fig. 1 Integration of GE with PSO for providing adaptive BBs. The bright orange blocks
in the flowchart represent the new elements introduced in our novel GEABB framework.

The inputs for GEABB algorithm are the BNF grammar, and BBs score.
The BBs used for the evolutionary process are shown in Table 1. After get-
ting the inputs, the algorithm initialises the particles P as a population with
random position xi, velocity vi, personal best Pbest, and an iteration count
of n = 0.

Table 1 BBs structure in BNF

Building Blocks
<Population Size>| <Iterations>| <N Swarms>|
<Velocity>| <Acceleration>| <Update Method>
| <Search Mode>| <Topologies>| <Inertia Weight>

<Population Size>::= 100 | 200 | 300 | 400 | 500
<Iterations>::= 25 | 50 | 75 | 100
<N Swarms>::= 1 | 2 | 3 | 4 | 5
<Velocity>::= 1.5
<Acceleration>::= <C1>| <C2>
<C1>::= 0 | 2.05 | 2
<C2>::= 0 | 2.05 | 2 | 2.8
<Update Method>::= <Synchronous>| <Asynchronous>

<Inertia Weight>::=
<Random>| <Linear Time Varying>|
<Non Linear Time Varying>|
<Fuzzy Adaptive>

<Search Mode>::= <Point Based>| <Reference Based>

<Topologies>::=
<Pyramid>| <Random>| <Ring>| <Star>|
<Von Neumann>

This is followed by particle encoding for all particles using the mapper Eq.
(5) with the grammar by the Mod (or modulus) rule. Given the non-terminal

Springer Nature 2021 LATEX template

Selection of Building Blocks for Adaptive Grammatical Evolution in PSO 9

Algorithm 1 GEABB Algorithm

Require: Grammar, BBsscore
1: Hybrid Approach of BBs Selection
2: Get the population size ←− BBsPopulationSize
3: Generate parents based on selected BBs
4: for Every particle i=1. . . n do
5: Initialise the position xi

6: Initialise the velocity vi
7: end for
8: for Every particle in i=1. . . n do
9: Encode particles according Eq. (5) using grammar

10: Evaluate fitness according Eq. (7)
11: end for
12: while ¬ Stopcondition (n ≥ nmax) do
13: for Every particle i=1. . . n do
14: Update position according Eq. (2)
15: Update velocity according Eq. (1)
16: if Objective function is minimisation then
17: Update Pbest according Eq. (3)
18: else
19: Update Pbest according Eq. (4)
20: end if
21: Select the best performing parents
22: Perform crossover to generate new children’s
23: end for
24: end while
25: Get the Gbest

<op>, which describes the set of mathematical operators that can be used
elsewhere in the grammar, there are four production rules to select from. The
choices are effectively labelled with integers counting from zero.

<op> ::= + (0)
- & (1)
* & (2)
/ & (3)

If we assume the codon produces the integer 6, then: 6 % 4 = 2, would select
rule (2) *. Therefore, the non-terminal <op> is replaced with the terminal *
in the derivation string. Each time a production rule is selected to transform
a non-terminal, another codon is read. In this way the system traverses the
genome.

Springer Nature 2021 LATEX template

10 Selection of Building Blocks for Adaptive Grammatical Evolution in PSO

This is followed by evaluation of the fitness of the particles with Eq. (7),

Fitness = E(P), (7)

where E is the evolution function and P is the individual phenotype. The
fitness gradient ranks the fitness of solutions in binary terms of better or worse
on any single given objective. The determination of how one single objective
fitness value is considered superior to another is done through maximisation
or minimisation.

In the case of maximisation, Pbest is updated by Eq. (4), while for min-
imisation by Eq. (3). At the same time, particles update their position and
velocity using Eqs. (2) and (1) respectively.

If the Termination Criteria n ≥ nmax is met, the algorithm decodes Gbest
and the output is the best solution found so far. Otherwise, n = n + 1, and
the algorithm selects the best-performing parents and performs a crossover
using the crossover probability value of 75%. This means that it generates a
new population set that has a 75% probability of having a population set the
same as the previous one, after which it goes back to the encoding process step
described above.

This process continues until the optimal solution is found or n ≥ nmax.
It ends with the final optimal solution found. Along with that, the algorithm
obtains the BBs used in the current evolutionary process that provided the
optimal solution and increments the scores by one value for those blocks.

6 Experiments

The objective of the experiments serves two purposes. The first is to identify
the significance level of GEABB when compared to PSO. The second is to
compare the run-time and iteration count of GEABB and PSO. Each set of
experiments was repeated 30 times.

The proposed algorithm GEABB was tested with CEC’2013 [35] bench-
mark problems which are designed with the aim of providing a suitable
evaluation platform for testing and comparing large-scale global optimization
algorithms. It has three fully-separable functions (f1 − f3) , eight partially
additively separable function; four functions with a separable sub component
(f4−f7) and four functions with no separable sub components (f8−f11), three
overlapping functions (f12 − f14) and one non-separable function (f15).

The description of these benchmark problems, Definition and Range are
presented in Table 2. [35] gives the detailed description of these global
benchmark problems.

In order to compare GEABB with PSO, we tuned the parameters of both
algorithms using the IRACE package [36]. The tuned parameter settings for
these experiments are shown in Table 3.

The PC Configuration for conducting these experiments is with Windows
10 operating system with AMD Ryzen 7 2700 Eight Core 3.20 GHz processor
with 32GB of ram. The application used is Spyder 4.2.0.

Springer Nature 2021 LATEX template

Selection of Building Blocks for Adaptive Grammatical Evolution in PSO 11

Table 2 CEC’2013 state of the art benchmark problems

Description Definition Range

Shifted Elliptic f1(Z) =
∑D

i=1 10
6 t−1
D−1 z2i [-100,100]

Shifted Rastrigin f2(Z) =
∑D

i=1[z
2
i − 10 cos(2πzi) + 10] [-5,5]

Shifted Ackley
f3(Z) = −20 exp

(
−0.2

√
1
D

∑D
i=1 z

2
i)

)
− exp

(
1
D

∑D
i=1 cos(2πzi)

)
+ 20 + e

[-32,32]

7-nonseparable, 1-separable
Shifted and Rotated Elliptic

f4(Z) =
∑|S|−1

i=1 wifelliptic(Zi)
+felliptic(Z|S|)

[-100,100]

7-nonseparable, 1-separable
Shifted and Rotated
Rastrigin’s

f5(Z) =
∑|S|−1

i=1 wifrastrigin(Zi)
+frastrigin(Z|S|)

[-5,5]

7-nonseparable, 1-separable
Shifted and Rotated Ackley’s

f6(Z) =
∑|S|−1

i=1 wifackley(Zi)
+fackley(Z|S|)

[-32,32]

7-nonseparable, 1-separable
Shifted Schwefel’s

f7(Z) =
∑|S|−1

i=1 wifschwefel(Zi)
+fschwefel(Z|S|)

[-100,100]

20-nonseparable Shifted and
Rotated Elliptic

f8(Z) =
∑|S|

i=1 wifelliptic(Zi) [-100,100]

20-nonseparable Shifted and
Rotated Rastrigin’s

f9(Z) =
∑|S|

i=1 wifrastrigin(Zi) [-5,5]

20-nonseparable Shifted and
Rotated Ackley’s

f10(Z) =
∑|S|

i=1 wifackley(Zi) [-32,32]

20-nonseparable Shifted

Schwefel’s f11(Z) =
∑|S|

i=1 wifschwefel(Zi) [-100,100]

Shifted Rosenbrock’s
f12(Z) =

∑D−1
i=1 [100(z2i − zi+1)2

+(zi − 1)2]
[-100,100]

Shifted Schwefel’s Function
with Conforming
Overlapping
Subcomponents

f13(Z) =
∑|S|

i=1 wifschwefel(Zi) [-100,100]

Shifted Schwefel’s Function
with Conflicting
Overlapping
Subcomponents

f14(Z) =
∑|S|

i=1 wifschwefel(Zi) [-100,100]

Shifted Schwefel’s f15(Z) =
∑D

i=1

(∑i
j=1 xi

)2
[-100,100]

7 Results and Discussion

The results obtained when testing with benchmark problems are shown in
Table 4. The outcomes obtained by GEABB and PSO using 15 benchmark
problems are presented. To evaluate the performance, we used the two tail
t-test, a hypothesis testing used to determine the GEABB significance over
PSO.

The mean, standard deviation and level of significance of both algorithms
are calculated with most commonly used significance level p as 0.05 for 15
benchmark problems to determine the significance of GEABB. On all tested
problems, GEABB performed better than PSO with significance greater than
95%.

Springer Nature 2021 LATEX template

12 Selection of Building Blocks for Adaptive Grammatical Evolution in PSO

Table 3 Tuned parameter settings for the
experiments

Parameter GEABB PSO

P - 500
nmax - 75
Selection Proportion 0.5 -
Crossover Probability 0.75 -
C1 - 1.55
C2 - 1.98
w - 0.73
Tournament Size 2 -
Initial Genome Length 150 -
Number of runs for each problem 30 30

Figure 2 and 3 shows the mean run time and iteration count of GEABB
and PSO for 15 benchmark problems. For each problem, 30 runs of GEABB
and PSO were performed and the collected data for run time and iteration
count were averaged.

The results show, that using adaptive BBs in GEABB reduced significantly
the run time in most cases compared to PSO. In a few cases, f3, f6, f10, f12, a
small difference in run time is observed, however overall GEABB run time is
better than the PSO. GEABB took much less iterations in getting the optimal
solution compared to PSO.

Fig. 2 The comparison of mean run time (in sec’s) of PSO and GEABB with CEC’2013
benchmark functions. Shorter bar length indicates less computational time, thus more com-
putationally efficient algorithm.

Springer Nature 2021 LATEX template

Selection of Building Blocks for Adaptive Grammatical Evolution in PSO 13

Table 4 Two-Tail t-Test significance level calculation and
performance comparison of PSO and GEABB in CEC’2013
benchmark problems

Function Approach Mean SD Significance

f1 PSO 8.46E-04 5.83E-05
GEABB 1.11E-04 1.96E-04 >95%

f2 PSO 8.63E-04 5.86E-05
GEABB 2.96E-05 0.96E-05 >95%

f3 PSO 6.11E-03 6.83E-01
GEABB 2.79E-05 1.11E-04 >95%

f4 PSO 25.86 19.45
GEABB 7.86E-05 2.09E-04 >95%

f5 PSO 9.56E-04 3.53E-04
GEABB 5.98E-05 1.86E-04 >95%

f6 PSO 11.73 5.23
GEABB 4.11E-05 1.23E-04 >95%

f7 PSO 3156.89 1742.63
GEABB 2986.21 1232.47 >95%

f8 PSO 6.23E-04 7.87E-05
GEABB 1.03E-04 1.97E-04 >95%

f9 PSO 5.23E-04 4.12E-05
GEABB 2.36E-05 1.89E-05 >95%

f10 PSO 10.78E-03 6.59E-03
GEABB 3.54E-04 1.26E-04 >95%

f11 PSO 15.63E-05 11.71E-04
GEABB 7.39E-05 3.91E-04 >95%

f12 PSO 7.68E-04 6.89E-04
GEABB 1.73E-04 0.63E-04 >95%

f13 PSO 11.27E-04 8.98E-04
GEABB 4.71E-04 1.44E-04 >95%

f14 PSO 9.68E-03 6.34E-03
GEABB 2.56E-05 1.36E-05 >95%

f15 PSO 7.42E-04 5.63E-04
GEABB 3.48E-04 1.98E-04 >95%

Fig. 3 Comparison of iteration count between PSO and GEABB with CEC’2013 benchmark
functions. The shorter bar length indicates the better efficiency of the algorithm as it takes
less iterations in finding optimal fitness. For example, f3 and f9.

Springer Nature 2021 LATEX template

14 Selection of Building Blocks for Adaptive Grammatical Evolution in PSO

The results in Table 4, Figure 2 and 3, show that GEABB performed well
on all tested 15 benchmark problems. Selecting adaptive BBs significantly
improved the performance of the algorithm and reduced the computational
time and iteration count. Furthermore, as the algorithm uses the previous best
performed BBs, it increases the performance level (measured by computational
time and iteration count) which in turn reduces the risk of Red Queen Effect.

8 Conclusion

In this paper, we propose a novel hybrid PSO approach, GEABB, providing
adaptive BBs with the integration of GE. We implemented a hybrid approach
for selecting BBs, combining elitist selection and roulette wheel selection. To
make GEABB algorithm self-adaptable, we implemented a scoring function to
score and select the BBs.

We tested the proposed algorithm GEABB on 15 global optimisation
problems. In all tested scenarios, GEABB outperformed PSO by using less
iterations and was computationally more efficient in finding the optimal
solution.

The main contributions of the study are:

• A novel approach, GEABB, is proposed with scoring and recommending
BBs making the algorithm self-adaptable to the problem instance in order
to find the optimal solution.

• A hybrid approach is used to provide adaptive BBs for solving different
problem instances without any manual interpretations to the blocks set.

• GEABB outperforms the PSO by taking fewer iterations and less computa-
tional time in all tested benchmark problems.

As an initial approach, the proposed model functioned well. Future work
will address the self-adaptability of the algorithm by dynamically changing
the blocks during the search process. This will make GEABB more robust and
efficient in solving online and real-world problem instances.

Acknowledgments. JG thanks Deakin University for Deakin University
Postgraduate Research Scholarship (DUPRS).

References

[1] Eberhart, R., Kennedy, J.: New optimizer using particle swarm the-
ory. Proceedings of the International Symposium on Micro Machine
and Human Science, 39–43 (1995). https://doi.org/10.1109/MHS.1995.
494215

[2] Ghosh, M., Guha, R., Alam, I., Lohariwal, P., Jalan, D., Sarkar, R.: Binary
genetic swarm optimization: A combination of ga and pso for feature
selection. Journal of Intelligent Systems 29(1), 1598–1610 (2020). https:
//doi.org/10.1515/jisys-2019-0062

https://doi.org/10.1109/MHS.1995.494215
https://doi.org/10.1109/MHS.1995.494215
https://doi.org/10.1515/jisys-2019-0062
https://doi.org/10.1515/jisys-2019-0062

Springer Nature 2021 LATEX template

Selection of Building Blocks for Adaptive Grammatical Evolution in PSO 15

[3] Zhao, F., Zhang, Q., Yu, D., Chen, X., Yang, Y.: A hybrid algorithm
based on PSO and simulated annealing and its applications for partner
selection in virtual enterprise. In: Lecture Notes in Computer Science, vol.
3644, pp. 380–389 (2005). https://doi.org/10.1007/11538059 40

[4] Shelokar, P.S., Siarry, P., Jayaraman, V.K., Kulkarni, B.D.: Particle
swarm and ant colony algorithms hybridized for improved continuous
optimization. Elsevier 188(1), 129–142 (2007). https://doi.org/10.1016/
j.amc.2006.09.098

[5] Ghodrati, A., Lotfi, S.: A hybrid CS/GA algorithm for global optimiza-
tion. In: Advances in Intelligent and Soft Computing, vol. 130 AISC, pp.
397–404 (2012). https://doi.org/10.1007/978-81-322-0487-9 38

[6] Gao, Y.: An improved hybrid group intelligent algorithm based on arti-
ficial bee colony and particle swarm optimization. In: Proceedings -
2018 International Conference on Virtual Reality and Intelligent Systems,
ICVRIS 2018, pp. 160–163 (2018). https://doi.org/10.1109/ICVRIS.2018.
00046

[7] Zhao, F., Li, G., Yang, C., Abraham, A., Liu, H.: A human-computer
cooperative particle swarm optimization based immune algorithm for lay-
out design. Neurocomputing 132, 68–78 (2014). https://doi.org/10.1016/
j.neucom.2013.03.062

[8] Pan, T.S., Dao, T.K., Nguyen, T.T., Chu, S.C.: Hybrid particle
swarm optimization with bat algorithm. Advances in Intelligent Sys-
tems and Computing 329, 37–47 (2015). https://doi.org/10.1007/
978-3-319-12286-1 5

[9] Wei, B., Xia, X., Gui, L., He, G., Xie, C., Xing, Y., Wu, R., Tang, Y.: A
hybrid optimizer based on firefly algorithm and particle swarm optimiza-
tion algorithm. Article in Journal of Computational Science 26, 488–500
(2017). https://doi.org/10.1016/j.jocs.2017.07.009

[10] Shi, Y., Wang, Q., Zhang, H.: Hybrid ensemble PSO-GSO algorithm. In:
Proceedings - 2012 IEEE 2nd International Conference on Cloud Com-
puting and Intelligence Systems, IEEE CCIS 2012, vol. 1, pp. 114–117
(2013). https://doi.org/10.1109/CCIS.2012.6664379

[11] Nakane, T., Bold, N., Sun, H., Lu, X., Akashi, T., Zhang, C.: Application
of evolutionary and swarm optimization in computer vision: a literature
survey. IPSJ Transactions on Computer Vision and Applications 12, 1–34
(2020). https://doi.org/10.1186/S41074-020-00065-9/TABLES/16

[12] Ryan, C., Collins, J.J., O’Neill, M.: Grammatical evolution: Evolving
programs for an arbitrary language. Lecture Notes in Computer Science

https://doi.org/10.1007/11538059_40
https://doi.org/10.1016/j.amc.2006.09.098
https://doi.org/10.1016/j.amc.2006.09.098
https://doi.org/10.1007/978-81-322-0487-9_38
https://doi.org/10.1109/ICVRIS.2018.00046
https://doi.org/10.1109/ICVRIS.2018.00046
https://doi.org/10.1016/j.neucom.2013.03.062
https://doi.org/10.1016/j.neucom.2013.03.062
https://doi.org/10.1007/978-3-319-12286-1_5
https://doi.org/10.1007/978-3-319-12286-1_5
https://doi.org/10.1016/j.jocs.2017.07.009
https://doi.org/10.1109/CCIS.2012.6664379
https://doi.org/10.1186/S41074-020-00065-9/TABLES/16

Springer Nature 2021 LATEX template

16 Selection of Building Blocks for Adaptive Grammatical Evolution in PSO

(including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics) 1391, 83–96 (1998). https://doi.org/10.1007/
BFB0055930

[13] Sengupta, S., Basak, S., Peters, R.A.: Particle Swarm Optimization:
A survey of historical and recent developments with hybridization
perspectives. arXiv (2018) arXiv:1804.05319. https://doi.org/10.3390/
make1010010

[14] Pedersen, M.E.H., Chipperfield, A.J.: Simplifying particle swarm opti-
mization. Applied Soft Computing 10, 618–628 (2010). https://doi.org/
10.1016/J.ASOC.2009.08.029

[15] Floreano, D., Nolfi, S.: God save the red queen! competition in co-
evolutionary robotics. Genetic Programming 1997: Proceedings of the
Second Annual Conference, 398–406 (1997). https://doi.org/10.1.1.126.
1780

[16] Jian, M.C., Chen, Y.P.: Introducing recombination with dynamic linkage
discovery to particle swarm optimization. In: GECCO 2006 - Genetic and
Evolutionary Computation Conference, vol. 1, pp. 85–86 (2006). https:
//doi.org/10.1145/1143997.1144010

[17] Shandilya, S.K., Shandilya, S., Deep, K., Nagar, A.K.: Handbook of
research on soft computing and nature-inspired algorithms. Handbook of
Research on Soft Computing and Nature-Inspired Algorithms, 101–132
(2017). https://doi.org/10.4018/978-1-5225-2128-0

[18] Sipper, M., Fu, W., Ahuja, K., Moore, J.H.: Investigating the parameter
space of evolutionary algorithms. BioData Mining 11, 1–14 (2018). https:
//doi.org/10.1186/S13040-018-0164-X/FIGURES/5

[19] Ágoston Endre Eiben, Hinterding, R., Michalewicz, Z.: Parameter con-
trol in evolutionary algorithms. IEEE Transactions on Evolutionary
Computation 3, 124–141 (1999). https://doi.org/10.1109/4235.771166

[20] López-Ibáñez, M., Dubois-Lacoste, J., Cáceres, L.P., Birattari, M.,
Stützle, T.: The irace package: Iterated racing for automatic algorithm
configuration. Operations Research Perspectives 3, 43–58 (2016). https:
//doi.org/10.1016/j.orp.2016.09.002

[21] Birattari, M., Stützle, T., Paquete, L., Varrentrapp, K.: A racing algo-
rithm for configuring metaheuristics. In: Proceedings of the 4th Annual
Conference on Genetic and Evolutionary Computation. GECCO’02, pp.
11–18. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA
(2002)

https://doi.org/10.1007/BFB0055930
https://doi.org/10.1007/BFB0055930
https://arxiv.org/abs/1804.05319
https://doi.org/10.3390/make1010010
https://doi.org/10.3390/make1010010
https://doi.org/10.1016/J.ASOC.2009.08.029
https://doi.org/10.1016/J.ASOC.2009.08.029
https://doi.org/10.1.1.126.1780
https://doi.org/10.1.1.126.1780
https://doi.org/10.1145/1143997.1144010
https://doi.org/10.1145/1143997.1144010
https://doi.org/10.4018/978-1-5225-2128-0
https://doi.org/10.1186/S13040-018-0164-X/FIGURES/5
https://doi.org/10.1186/S13040-018-0164-X/FIGURES/5
https://doi.org/10.1109/4235.771166
https://doi.org/10.1016/j.orp.2016.09.002
https://doi.org/10.1016/j.orp.2016.09.002

Springer Nature 2021 LATEX template

Selection of Building Blocks for Adaptive Grammatical Evolution in PSO 17

[22] Birattari, M., Yuan, Z., Balaprakash, P., Stützle, T.: F-race and iter-
ated f-race: An overview. Experimental Methods for the Analysis
of Optimization Algorithms, 311–336 (2010). https://doi.org/10.1007/
978-3-642-02538-9 13

[23] Bansal, J.C., Singh, P.K., Saraswat, M., Verma, A., Jadon, S.S., Abraham,
A.: Inertia weight strategies in particle swarm optimization. In: Proceed-
ings of the 2011 3rd World Congress on Nature and Biologically Inspired
Computing, NaBIC 2011, pp. 633–640 (2011). https://doi.org/10.1109/
NaBIC.2011.6089659

[24] Eberhart, R.C., Shi, Y.: Comparing inertia weights and constriction fac-
tors in particle swarm optimization. In: Proceedings of the 2000 Congress
on Evolutionary Computation, CEC 2000, vol. 1, pp. 84–88 (2000).
https://doi.org/10.1109/CEC.2000.870279

[25] Sousa-Ferreira, I., Sousa, D.: A review of velocity-type PSO variants. Jour-
nal of Algorithms and Computational Technology 11(1), 23–30 (2017).
https://doi.org/10.1177/1748301816665021

[26] Wang, H.C., Yang, C.T.: Enhanced Particle Swarm Optimization With
Self-Adaptation Based On Fitness-Weighted Acceleration Coefficients.
Intelligent Automation and Soft Computing 22(1), 97–110 (2016). https:
//doi.org/10.1080/10798587.2015.1057956

[27] Sloss, A.N., Gustafson, S.: 2019 Evolutionary Algorithms Review (2019).
https://doi.org/10.1007/978-3-030-39958-0 16

[28] O’Neill, M., Ryan, C.: Grammatical evolution. IEEE Transactions on Evo-
lutionary Computation 5(4), 349–358 (2001). https://doi.org/10.1109/
4235.942529

[29] Ryan, C., O’Neill, M., Collins, J.J.: Handbook of Grammatical Evolution,
pp. 1–497 (2018). https://doi.org/10.1007/978-3-319-78717-6

[30] Nicolau, M., Agapitos, A.: Understanding grammatical evolution: Gram-
mar design. Handbook of Grammatical Evolution, 23–53 (2018). https:
//doi.org/10.1007/978-3-319-78717-6 2

[31] Reynolds, C.W.: FLOCKS, HERDS, AND SCHOOLS: A DISTRIBUTED
BEHAVIORAL MODEL. Computer Graphics (ACM) 21(4), 25–34
(1987). https://doi.org/10.1145/37402.37406

[32] de Almeida, B.S.G., Leite, V.C.: Particle swarm optimization: A powerful
technique for solving engineering problems. Swarm Intelligence - Recent
Advances, New Perspectives and Applications (2019). https://doi.org/10.
5772/INTECHOPEN.89633

https://doi.org/10.1007/978-3-642-02538-9_13
https://doi.org/10.1007/978-3-642-02538-9_13
https://doi.org/10.1109/NaBIC.2011.6089659
https://doi.org/10.1109/NaBIC.2011.6089659
https://doi.org/10.1109/CEC.2000.870279
https://doi.org/10.1177/1748301816665021
https://doi.org/10.1080/10798587.2015.1057956
https://doi.org/10.1080/10798587.2015.1057956
https://doi.org/10.1007/978-3-030-39958-0_16
https://doi.org/10.1109/4235.942529
https://doi.org/10.1109/4235.942529
https://doi.org/10.1007/978-3-319-78717-6
https://doi.org/10.1007/978-3-319-78717-6_2
https://doi.org/10.1007/978-3-319-78717-6_2
https://doi.org/10.1145/37402.37406
https://doi.org/10.5772/INTECHOPEN.89633
https://doi.org/10.5772/INTECHOPEN.89633

Springer Nature 2021 LATEX template

18 Selection of Building Blocks for Adaptive Grammatical Evolution in PSO

[33] Fagan, D., Murphy, E.: Mapping in grammatical evolution. Hand-
book of Grammatical Evolution, 79–108 (2018). https://doi.org/10.1007/
978-3-319-78717-6 4

[34] Fenton, M., Mcdermott, J., Fagan, D., Forstenlechner, S., Hemberg, E.,
O’neill, M.: Ponyge2: Grammatical evolution in python (2017). https://
doi.org/10.1145/3067695.3082469

[35] Li, X., Tang, K., Omidvar, M., Yang, Z., Qin, K., China, H.: Benchmark
functions for the CEC’2013 special session and competition on large-scale
global optimization. gene 7(33), 8 (2013)

[36] López-Ibáñez, M., Dubois-Lacoste, J., Pérez Cáceres, L., Birattari, M.,
Stützle, T.: The irace package: Iterated racing for automatic algorithm
configuration. Operations Research Perspectives 3, 43–58 (2016). https:
//doi.org/10.1016/j.orp.2016.09.002

Statements and Declarations

8.1 Funding

This research received no external funding. JG thanks Deakin University for
Deakin University Postgraduate Research Scholarship (DUPRS).

8.2 Competing Interests

The authors declare no conflicts of interest.

8.3 Author Contributions

JG wrote the manuscript, developed algorithm, wrote the software and per-
formed the experiments. JCB, RD and MA wrote the manuscripts and
evaluated the experiments. JCB and MA designed the study. All authors have
read and agree to the published version of the manuscript.

8.4 Data Availability

The CEC’2013 benchmark functions used in the current study are available in
the mikeagn/CEC2013 repository, https://github.com/mikeagn/CEC2013

https://doi.org/10.1007/978-3-319-78717-6_4
https://doi.org/10.1007/978-3-319-78717-6_4
https://doi.org/10.1145/3067695.3082469
https://doi.org/10.1145/3067695.3082469
https://doi.org/10.1016/j.orp.2016.09.002
https://doi.org/10.1016/j.orp.2016.09.002

	Introduction
	Preliminary Works
	PSO with GE
	Grammar
	Search Engine
	Mapper

	Hybrid Approach for BBs Selection
	Proposed Framework
	Experiments
	Results and Discussion
	Conclusion
	Acknowledgments
	Funding
	Competing Interests
	Author Contributions
	Data Availability

