1 Lin, D., Liu, Y., Cui, Y. Reviving the lithium metal anode for high-energy batteries. Nat. Nanotechnol. 12, 194-206 (2017).
2 Cheng, X.-B., Zhang, R., Zhao, C.-Z., Zhang, Q. Toward safe lithium metal anode in rechargeable batteries: A review. Chem. Rev. 117, 10403-10473 (2017).
3 Tikekar, M. D., Choudhury, S., Tu, Z., Archer, L. A. Design principles for electrolytes and interfaces for stable lithium-metal batteries. Nat. Energy 1, 16114 (2016).
4 Xu, W., et al. Lithium metal anodes for rechargeable batteries. Energy Environ. Sci. 7, 513-537 (2014).
5 Albertus, P., Babinec, S., Litzelman, S., Newman, A. Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries. Nat. Energy 3, 16-21 (2018).
6 Han, F., et al. High electronic conductivity as the origin of lithium dendrite formation within solid electrolytes. Nat. Energy 4, 187-196 (2019).
7 Krauskopf, T., Hartmann, H., Zeier, W. G., Janek, J. Toward a fundamental understanding of the lithium metal anode in solid-state batteries—An electrochemo-mechanical study on the garnet-type solid electrolyte Li6.25Al0.25La3Zr2O12. ACS Appl. Mater. Interfaces 11, 14463-14477 (2019).
8 Guo, Y., Li, H., Zhai, T. Reviving lithium-metal anodes for next-generation high-energy batteries. Adv. Mater. 29, 1700007 (2017).
9 Zou, Z., et al. Mobile ions in composite solids. Chem. Rev. 120, 4169-4221 (2020).
10 Winter, M., Barnett, B., Xu, K. Before Li ion batteries. Chem. Rev. 118, 11433-11456 (2018).
11 Huo, H., Luo, J., Thangadurai, V., Guo, X., Nan, C.-W., Sun, X. Li2CO3: A critical issue for developing solid garnet batteries. ACS Energy Lett. 5, 252-262 (2020).
12 Wang, X., et al. Stress-driven lithium dendrite growth mechanism and dendrite mitigation by electroplating on soft substrates. Nat. Energy 3, 227-235 (2018).
13 Peled, E. The electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systems—The solid electrolyte interphase model. J. Electrochem. Soc. 126, 2047-2051 (1979).
14 Aurbach, D. Review of selected electrode–solution interactions which determine the performance of Li and Li ion batteries. J. Power Sources 89, 206-218 (2000).
15 Steiger, J., Kramer, D., Mönig, R. Mechanisms of dendritic growth investigated by in situ light microscopy during electrodeposition and dissolution of lithium. J. Power Sources 261, 112-119 (2014).
16 Bai, P., Li, J., Brushett, F. R., Bazant, M. Z. Transition of lithium growth mechanisms in liquid electrolytes. Energy Environ. Sci. 9, 3221-3229 (2016).
17 Wang, A., Kadam, S., Li, H., Shi, S., Qi, Y. Review on modeling of the anode solid electrolyte interphase (SEI) for lithium-ion batteries. NPJ Comput. Mater. 4, 15 (2018).
18 Peled, E., Menkin, S. Review—SEI: past, present and future. J. Electrochem. Soc. 164, A1703-A1719 (2017).
19 Xiao, J. How lithium dendrites form in liquid batteries. Science 366, 426 (2019).
20 Porz, L., et al. Mechanism of lithium metal penetration through inorganic solid electrolytes. Adv. Energy Mater. 7, 1701003 (2017).
21 Kerman, K., Luntz, A., Viswanathan, V., Chiang, Y.-M., Chen, Z. Review—Practical challenges hindering the development of solid state Li ion batteries. J. Electrochem. Soc. 164, A1731-A1744 (2017).
22 Swamy, T., et al. Lithium metal penetration induced by electrodeposition through solid electrolytes: Example in single-crystal Li6La3ZrTaO12 garnet. J. Electrochem. Soc. 165, A3648-A3655 (2018).
23 Li, W., et al. The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth. Nat. Commun. 6, 7436 (2015).
24 Zheng, J., et al. Electrolyte additive enabled fast charging and stable cycling lithium metal batteries. Nat. Energy 2, 17012 (2017).
25 Adams, B. D., et al. Long term stability of Li-S batteries using high concentration lithium nitrate electrolytes. Nano Energy 40, 607-617 (2017).
26 Shi, P., et al. A highly concentrated phosphate-based electrolyte for high-safety rechargeable lithium batteries. Chem. Commun. 54, 4453-4456 (2018).
27 Fu, K., et al. Flexible, solid-state, ion-conducting membrane with 3D garnet nanofiber networks for lithium batteries. Proc. Natl. Acad. Sci. USA 113, 7094 (2016).
28 Zhou, W., Wang, S., Li, Y., Xin, S., Manthiram, A., Goodenough, J. B. Plating a dendrite-free lithium anode with a polymer/ceramic/polymer sandwich electrolyte. J. Am. Chem. Soc. 138, 9385-9388 (2016).
29 Li, N.-W., Yin, Y.-X., Yang, C.-P., Guo, Y.-G. An artificial solid electrolyte interphase layer for stable lithium metal anodes. Adv. Mater. 28, 1853-1858 (2016).
30 Liu, Y., et al. An artificial solid electrolyte interphase with high Li-ion conductivity, mechanical strength, and flexibility for stable lithium metal anodes. Adv. Mater. 29, 1605531 (2017).
31 Brady, R. M., Ball, R. C. Fractal growth of copper electrodeposits. Nature 309, 225-229 (1984).
32 Grier, D., Ben-Jacob, E., Clarke, R., Sander, L. M. Morphology and microstructure in electrochemical deposition of zinc. Phys. Rev. Lett. 56, 1264-1267 (1986).
33 Bard, A. J., Faulkner, L. R. Fundamentals and applications. electrochemical method. 2, 580-632 (John Wiley & Sons, Inc. New York, 2001).
34 Tang, C.-Y., Dillon, S. J. In situ scanning electron microscopy characterization of the mechanism for Li dendrite growth. J. Electrochem. Soc. 163, A1660-A1665 (2016).
35 Nishikawa, K., Mori, T., Nishida, T., Fukunaka, Y., Rosso, M., Homma, T. In situ observation of dendrite growth of electrodeposited Li metal. J. Electrochem. Soc. 157, A1212 (2010).
36 Kushima, A., et al. Liquid cell transmission electron microscopy observation of lithium metal growth and dissolution: Root growth, dead lithium and lithium flotsams. Nano Energy 32, 271-279 (2017).
37 Yamaki, J.-i., Tobishima, S.-i., Hayashi, K., Keiichi, S., Nemoto, Y., Arakawa, M. A consideration of the morphology of electrochemically deposited lithium in an organic electrolyte. J. Power Sources 74, 219-227 (1998).
38 Mehdi, B. L., et al. Observation and quantification of nanoscale processes in lithium batteries by operando electrochemical (S)TEM. Nano Lett. 15, 2168-2173 (2015).
39 Harry, K. J., Hallinan, D. T., Parkinson, D. Y., MacDowell, A. A., Balsara, N. P. Detection of subsurface structures underneath dendrites formed on cycled lithium metal electrodes. Nat. Mater. 13, 69-73 (2014).
40 Zeng, Z., Liang, W.-I., Liao, H.-G., Xin, H. L., Chu, Y.-H., Zheng, H. Visualization of electrode–electrolyte interfaces in LiPF6/EC/DEC electrolyte for lithium ion batteries via in situ TEM. Nano Lett. 14, 1745-1750 (2014).
41 Orsini, F., et al. In situ SEM study of the interfaces in plastic lithium cells. J. Power Sources 81-82, 918-921 (1999).
42 Shi, S., Qi, Y., Li, H., Hector, L. G. Defect thermodynamics and diffusion mechanisms in Li2CO3 and implications for the solid electrolyte interphase in Li-ion batteries. J. Phys. Chem. C. 117, 8579-8593 (2013).
43 Yang, T., et al. Air-stable lithium spheres produced by electrochemical plating. Angew. Chem., Int. Ed. 57, 12750-12753 (2018).
44 Li, Y., et al. Atomic structure of sensitive battery materials and interfaces revealed by cryo–electron microscopy. Science 358, 506 (2017).
45 Xu, S., Das, S. K., Archer, L. A. The Li–CO2 battery: a novel method for CO2 capture and utilization. RSC Adv. 3, 6656-6660 (2013).
46 Sarobol, P., Blendell, J. E., Handwerker, C. A. Whisker and hillock growth via coupled localized Coble creep, grain boundary sliding, and shear induced grain boundary migration. Acta Mater. 61, 1991-2003 (2013).
47 Chason, E., Jadhav, N., Pei, F., Buchovecky, E., Bower, A. Growth of whiskers from Sn surfaces: Driving forces and growth mechanisms. Prog. Surf. Sci. 88, 103-131 (2013).
48 Herbert, E. G., Hackney, S. A., Thole, V., Dudney, N. J., Phani, P. S. Nanoindentation of high-purity vapor deposited lithium films: A mechanistic rationalization of diffusion-mediated flow. J. Mater. Res. 33, 1347-1360 (2018).
49 Lee, B. Z., Lee, D. N. Spontaneous growth mechanism of tin whiskers. Acta Mater. 46, 3701-3714 (1998).
50 Zhang, L., et al. Probing the charging and discharging behavior of K-CO2 nanobatteries in an aberration corrected environmental transmission electron microscope. Nano Energy 53, 544-549 (2018).