1 Drosten, C. et al. Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N Engl J Med 348, 1967-1976, doi:10.1056/NEJMoa030747 (2003).
2 Lee, N. et al. A major outbreak of severe acute respiratory syndrome in Hong Kong. N Engl J Med 348, 1986-1994, doi:10.1056/NEJMoa030685 (2003).
3 Peiris, J. S. et al. Coronavirus as a possible cause of severe acute respiratory syndrome. Lancet 361, 1319-1325, doi:10.1016/s0140-6736(03)13077-2 (2003).
4 Zhou, P. et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 579, 270-273, doi:10.1038/s41586-020-2012-7 (2020).
5 Zhu, N. et al. A Novel Coronavirus from Patients with Pneumonia in China, 2019. N Engl J Med 382, 727-733, doi:10.1056/NEJMoa2001017 (2020).
6 Zhou, F. et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet 395, 1054-1062, doi:10.1016/S0140-6736(20)30566-3 (2020).
7 Guan, W. J. et al. Clinical Characteristics of Coronavirus Disease 2019 in China. N Engl J Med 382, 1708-1720, doi:10.1056/NEJMoa2002032 (2020).
8 Chan, J. F. et al. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster. Lancet 395, 514-523, doi:10.1016/S0140-6736(20)30154-9 (2020).
9 Li, W. et al. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature 426, 450-454, doi:10.1038/nature02145 (2003).
10 Kuba, K. et al. A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus-induced lung injury. Nat Med 11, 875-879, doi:10.1038/nm1267 (2005).
11 Shang, J. et al. Structural basis of receptor recognition by SARS-CoV-2. Nature 581, 221-224, doi:10.1038/s41586-020-2179-y (2020).
12 Wrapp, D. et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science 367, 1260-1263, doi:10.1126/science.abb2507 (2020).
13 Donoghue, M. et al. A novel angiotensin-converting enzyme-related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1-9. Circ Res 87, E1-9, doi:10.1161/01.res.87.5.e1 (2000).
14 Tipnis, S. R. et al. A human homolog of angiotensin-converting enzyme. Cloning and functional expression as a captopril-insensitive carboxypeptidase. J Biol Chem 275, 33238-33243, doi:10.1074/jbc.M002615200 (2000).
15 Corvol, P., Jeunemaitre, X., Charru, A., Kotelevtsev, Y. & Soubrier, F. Role of the renin-angiotensin system in blood pressure regulation and in human hypertension: new insights from molecular genetics. Recent Prog Horm Res 50, 287-308, doi:10.1016/b978-0-12-571150-0.50017-2 (1995).
16 Skeggs, L. T., Dorer, F. E., Levine, M., Lentz, K. E. & Kahn, J. R. The biochemistry of the renin-angiotensin system. Adv Exp Med Biol 130, 1-27 (1980).
17 Gheblawi, M. et al. Angiotensin-Converting Enzyme 2: SARS-CoV-2 Receptor and Regulator of the Renin-Angiotensin System: Celebrating the 20th Anniversary of the Discovery of ACE2. Circ Res 126, 1456-1474, doi:10.1161/CIRCRESAHA.120.317015 (2020).
18 Imai, Y. et al. Angiotensin-converting enzyme 2 protects from severe acute lung failure. Nature 436, 112-116, doi:10.1038/nature03712 (2005).
19 Yang, P. et al. Angiotensin-converting enzyme 2 (ACE2) mediates influenza H7N9 virus-induced acute lung injury. Sci Rep 4, 7027, doi:10.1038/srep07027 (2014).
20 Zou, Z. et al. Angiotensin-converting enzyme 2 protects from lethal avian influenza A H5N1 infections. Nat Commun 5, 3594, doi:10.1038/ncomms4594 (2014).
21 Ziegler, C. G. K. et al. SARS-CoV-2 Receptor ACE2 Is an Interferon-Stimulated Gene in Human Airway Epithelial Cells and Is Detected in Specific Cell Subsets across Tissues. Cell 181, 1016-1035 e1019, doi:10.1016/j.cell.2020.04.035 (2020).
22 Onabajo, O. O. et al. Interferons and viruses induce a novel truncated ACE2 isoform and not the full-length SARS-CoV-2 receptor. Nat Genet 52, 1283-1293, doi:10.1038/s41588-020-00731-9 (2020).
23 Oudit, G. Y. et al. Human recombinant ACE2 reduces the progression of diabetic nephropathy. Diabetes 59, 529-538, doi:10.2337/db09-1218 (2010).
24 Zhong, J. et al. Angiotensin-converting enzyme 2 suppresses pathological hypertrophy, myocardial fibrosis, and cardiac dysfunction. Circulation 122, 717-728, 718 p following 728, doi:10.1161/CIRCULATIONAHA.110.955369 (2010).
25 Monteil, V. et al. Inhibition of SARS-CoV-2 Infections in Engineered Human Tissues Using Clinical-Grade Soluble Human ACE2. Cell 181, 905-913 e907, doi:10.1016/j.cell.2020.04.004 (2020).
26 Minato, T. et al. B38-CAP is a bacteria-derived ACE2-like enzyme that suppresses hypertension and cardiac dysfunction. Nat Commun 11, 1058, doi:10.1038/s41467-020-14867-z (2020).
27 Vickers, C. et al. Hydrolysis of biological peptides by human angiotensin-converting enzyme-related carboxypeptidase. J Biol Chem 277, 14838-14843, doi:10.1074/jbc.M200581200 (2002).
28 Duarte, M. et al. Telmisartan for treatment of Covid-19 patients: An open multicenter randomized clinical trial. EClinicalMedicine 37, 100962, doi:10.1016/j.eclinm.2021.100962 (2021).
29 Semenzato, L. et al. Antihypertensive Drugs and COVID-19 Risk: A Cohort Study of 2 Million Hypertensive Patients. Hypertension 77, 833-842, doi:10.1161/HYPERTENSIONAHA.120.16314 (2021).
30 Chan, J. F. et al. Simulation of the clinical and pathological manifestations of Coronavirus Disease 2019 (COVID-19) in golden Syrian hamster model: implications for disease pathogenesis and transmissibility. Clin Infect Dis, doi:10.1093/cid/ciaa325 (2020).
31 Imai, M. et al. Syrian hamsters as a small animal model for SARS-CoV-2 infection and countermeasure development. Proc Natl Acad Sci U S A 117, 16587-16595, doi:10.1073/pnas.2009799117 (2020).
32 Hsieh, C. L. et al. Structure-based design of prefusion-stabilized SARS-CoV-2 spikes. Science 369, 1501-1505, doi:10.1126/science.abd0826 (2020).
33 Wang, S. et al. Endocytosis of the receptor-binding domain of SARS-CoV spike protein together with virus receptor ACE2. Virus Res 136, 8-15, doi:10.1016/j.virusres.2008.03.004 (2008).
34 Haga, S. et al. Modulation of TNF-alpha-converting enzyme by the spike protein of SARS-CoV and ACE2 induces TNF-alpha production and facilitates viral entry. Proc Natl Acad Sci U S A 105, 7809-7814, doi:10.1073/pnas.0711241105 (2008).
35 Lambert, D. W. et al. Tumor necrosis factor-alpha convertase (ADAM17) mediates regulated ectodomain shedding of the severe-acute respiratory syndrome-coronavirus (SARS-CoV) receptor, angiotensin-converting enzyme-2 (ACE2). J Biol Chem 280, 30113-30119, doi:10.1074/jbc.M505111200 (2005).
36 Bao, L. et al. The pathogenicity of SARS-CoV-2 in hACE2 transgenic mice. Nature 583, 830-833, doi:10.1038/s41586-020-2312-y (2020).
37 Boudewijns, R. et al. STAT2 signaling restricts viral dissemination but drives severe pneumonia in SARS-CoV-2 infected hamsters. Nat Commun 11, 5838, doi:10.1038/s41467-020-19684-y (2020).
38 Song, E. et al. Neuroinvasion of SARS-CoV-2 in human and mouse brain. J Exp Med 218, doi:10.1084/jem.20202135 (2021).
39 Lei, Y. et al. SARS-CoV-2 Spike Protein Impairs Endothelial Function via Downregulation of ACE 2. Circ Res 128, 1323-1326, doi:10.1161/CIRCRESAHA.121.318902 (2021).
40 Hagiwara, S., Iwasaka, H., Matumoto, S., Hidaka, S. & Noguchi, T. Effects of an angiotensin-converting enzyme inhibitor on the inflammatory response in in vivo and in vitro models. Crit Care Med 37, 626-633, doi:10.1097/CCM.0b013e3181958d91 (2009).
41 Liu, Q. et al. miRNA-200c-3p is crucial in acute respiratory distress syndrome. Cell Discov 3, 17021, doi:10.1038/celldisc.2017.21 (2017).
42 Mancia, G., Rea, F., Ludergnani, M., Apolone, G. & Corrao, G. Renin-Angiotensin-Aldosterone System Blockers and the Risk of Covid-19. N Engl J Med 382, 2431-2440, doi:10.1056/NEJMoa2006923 (2020).
43 Reynolds, H. R. et al. Renin-Angiotensin-Aldosterone System Inhibitors and Risk of Covid-19. N Engl J Med 382, 2441-2448, doi:10.1056/NEJMoa2008975 (2020).
44 de Abajo, F. J. et al. Use of renin-angiotensin-aldosterone system inhibitors and risk of COVID-19 requiring admission to hospital: a case-population study. Lancet 395, 1705-1714, doi:10.1016/S0140-6736(20)31030-8 (2020).
45 Klein, N. et al. Angiotensin-(1-7) protects from experimental acute lung injury. Crit Care Med 41, e334-343, doi:10.1097/CCM.0b013e31828a6688 (2013).
46 Nasseri, S. et al. Kinin B1 Receptor Antagonist BI113823 Reduces Acute Lung Injury. Crit Care Med 43, e499-507, doi:10.1097/CCM.0000000000001268 (2015).
47 Sodhi, C. P. et al. Attenuation of pulmonary ACE2 activity impairs inactivation of des-Arg(9) bradykinin/BKB1R axis and facilitates LPS-induced neutrophil infiltration. Am J Physiol Lung Cell Mol Physiol 314, L17-L31, doi:10.1152/ajplung.00498.2016 (2018).
48 Matsuyama, S. et al. Enhanced isolation of SARS-CoV-2 by TMPRSS2-expressing cells. Proc Natl Acad Sci U S A 117, 7001-7003, doi:10.1073/pnas.2002589117 (2020).
49 Crackower, M. A. et al. Angiotensin-converting enzyme 2 is an essential regulator of heart function. Nature 417, 822-828, doi:10.1038/nature00786 (2002).
50 Imai, Y. et al. Comparison of lung protection strategies using conventional and high-frequency oscillatory ventilation. J Appl Physiol (1985) 91, 1836-1844, doi:10.1152/jappl.2001.91.4.1836 (2001).
51 Shirato, K. et al. Development of Genetic Diagnostic Methods for Detection for Novel Coronavirus 2019(nCoV-2019) in Japan. Jpn J Infect Dis73, 304-307, doi:10.7883/yoken.JJID.2020.061 (2020).