1. Marques, M.R.C., et al., Nanomedicines - Tiny particles and big challenges. Adv Drug Deliv Rev, 2019. 151-152: p. 23-43.
2. Nanomedicine and the COVID-19 vaccines. Nature Nanotechnology, 2020. 15(12): p. 963-963.
3. van der Meel, R., T. Lammers, and W.E. Hennink, Cancer nanomedicines: oversold or underappreciated? Expert Opin Drug Deliv, 2017. 14(1): p. 1-5.
4. Soares, S., et al., Nanomedicine: Principles, Properties, and Regulatory Issues. Frontiers in Chemistry, 2018. 6(360).
5. Wolfram, J., et al., Safety of Nanoparticles in Medicine. Curr Drug Targets, 2015. 16(14): p. 1671-81.
6. Lee, W.M., Drug-induced hepatotoxicity. N Engl J Med, 2003. 349(5): p. 474-85.
7. Wu, T. and M. Tang, Review of the effects of manufactured nanoparticles on mammalian target organs. J Appl Toxicol, 2018. 38(1): p. 25-40.
8. Longmire, M., P.L. Choyke, and H. Kobayashi, Clearance properties of nano-sized particles and molecules as imaging agents: considerations and caveats. Nanomedicine (Lond), 2008. 3(5): p. 703-17.
9. Zhao, L. and B. Zhang, Doxorubicin induces cardiotoxicity through upregulation of death receptors mediated apoptosis in cardiomyocytes. Scientific Reports, 2017. 7(1): p. 44735.
10. Gabizon, A., et al., Clinical studies of liposome-encapsulated doxorubicin. Acta Oncol, 1994. 33(7): p. 779-86.
11. Hengge, U.R., et al., Fatal hepatic failure with liposomal doxorubicin. Lancet, 1993. 341(8841): p. 383-4.
12. Siegrist, S., et al., Preclinical hazard evaluation strategy for nanomedicines. Nanotoxicology, 2019. 13(1): p. 73-99.
13. Etheridge, M.L., et al., The big picture on nanomedicine: the state of investigational and approved nanomedicine products. Nanomedicine, 2013. 9(1): p. 1-14.
14. Pelaz, B., et al., Diverse Applications of Nanomedicine. ACS Nano, 2017. 11(3): p. 2313-2381.
15. Collins SD, Y.G., Tu T, et al., In Vitro Models of the Liver: Disease Modeling, Drug Discovery and Clinical Applications., in Hepatocellular Carcinoma, T.-P. JEE, Editor. 2009.
16. Fröhlich, E., Comparison of conventional and advanced in vitro models in the toxicity testing of nanoparticles. Artif Cells Nanomed Biotechnol, 2018. 46(sup2): p. 1091-1107.
17. Kumar, V., N. Sharma, and S.S. Maitra, In vitro and in vivo toxicity assessment of nanoparticles. International Nano Letters, 2017. 7(4): p. 243-256.
18. Jensen, C. and Y. Teng, Is It Time to Start Transitioning From 2D to 3D Cell Culture? Frontiers in Molecular Biosciences, 2020. 7(33).
19. Collins, S.D., et al., In Vitro Models of the Liver: Disease Modeling, Drug Discovery and Clinical Applications, in Hepatocellular Carcinoma, J.E.E. Tirnitz-Parker, Editor. 2019, Codon Publications Brisbane (AU). p. 48-60.
20. Zhou, Y., J.X. Shen, and V.M. Lauschke, Comprehensive Evaluation of Organotypic and Microphysiological Liver Models for Prediction of Drug-Induced Liver Injury. 2019. 10(1093).
21. Soldatow, V.Y., et al., In vitro models for liver toxicity testing. Toxicol Res (Camb), 2013. 2(1): p. 23-39.
22. Vigue, J., Asklepios Atlas of Human Anatomy. 2014.
23. Portmann, B.C., Chapter 1 - Development and Anatomy of the Normal Liver, in Comprehensive Clinical Hepatology (Second Edition), B.R. Bacon, et al., Editors. 2006, Mosby: Edinburgh. p. 1-15.
24. Rashidi, H., et al., 3D human liver tissue from pluripotent stem cells displays stable phenotype in vitro and supports compromised liver function in vivo. Arch Toxicol, 2018. 92(10): p. 3117-3129.
25. LeCluyse, E.L., K.L. Audus, and J.H. Hochman, Formation of extensive canalicular networks by rat hepatocytes cultured in collagen-sandwich configuration. Am J Physiol, 1994. 266(6 Pt 1): p. C1764-74.
26. Choi, J.M., et al., HepG2 cells as an in vitro model for evaluation of cytochrome P450 induction by xenobiotics. Arch Pharm Res, 2015. 38(5): p. 691-704.
27. Elizondo, G. and I.M. Medina-Diaz, Induction of CYP3A4 by 1alpha,25-dyhydroxyvitamin D3 in HepG2 cells. Life Sci, 2003. 73(2): p. 141-9.
28. Liu, M.C., et al., Tyrosine sulfation of proteins from the human hepatoma cell line HepG2. Proc Natl Acad Sci U S A, 1985. 82(21): p. 7160-4.
29. Vermeir, M., et al., Cell-based models to study hepatic drug metabolism and enzyme induction in humans. Expert Opin Drug Metab Toxicol, 2005. 1(1): p. 75-90.
30. Kermanizadeh, A., et al., An in vitro liver model - assessing oxidative stress and genotoxicity following exposure of hepatocytes to a panel of engineered nanomaterials. Particle and Fibre Toxicology, 2012. 9(1): p. 28.
31. Bandele, O.J., et al., In vitro toxicity screening of chemical mixtures using HepG2/C3A cells. Food Chem Toxicol, 2012. 50(5): p. 1653-9.
32. Bale, S.S., et al., In vitro platforms for evaluating liver toxicity. Exp Biol Med (Maywood), 2014. 239(9): p. 1180-1191.
33. Nibourg, G.A., et al., Proliferative human cell sources applied as biocomponent in bioartificial livers: a review. Expert Opin Biol Ther, 2012. 12(7): p. 905-21.
34. Guillouzo, A., et al., The human hepatoma HepaRG cells: a highly differentiated model for studies of liver metabolism and toxicity of xenobiotics. Chem Biol Interact, 2007. 168(1): p. 66-73.
35. Donato, M.T., et al., Cell lines: a tool for in vitro drug metabolism studies. Curr Drug Metab, 2008. 9(1): p. 1-11.
36. Gerets, H.H., et al., Characterization of primary human hepatocytes, HepG2 cells, and HepaRG cells at the mRNA level and CYP activity in response to inducers and their predictivity for the detection of human hepatotoxins. Cell Biol Toxicol, 2012. 28(2): p. 69-87.
37. O'Brien, P.J., et al., High concordance of drug-induced human hepatotoxicity with in vitro cytotoxicity measured in a novel cell-based model using high content screening. Arch Toxicol, 2006. 80(9): p. 580-604.
38. Zeilinger, K., et al., Cell sources for in vitro human liver cell culture models. Exp Biol Med (Maywood), 2016. 241(15): p. 1684-98.
39. Huang, J.R., et al., Liposomal Irinotecan for Treatment of Colorectal Cancer in a Preclinical Model. Cancers (Basel), 2019. 11(3).
40. Zhou, X., et al., Lactosylated liposomes for targeted delivery of doxorubicin to hepatocellular carcinoma. Int J Nanomedicine, 2012. 7: p. 5465-74.
41. Wang, P., et al., Evaluating cellular uptake of gold nanoparticles in HL-7702 and HepG2 cells for plasmonic photothermal therapy. Nanomedicine, 2018. 13(18): p. 2245-2259.
42. Rathinaraj, P., et al., Targeting and molecular imaging of HepG2 cells using surface-functionalized gold nanoparticles. Journal of Nanoparticle Research, 2015. 17(7): p. 311.
43. Ashokkumar, T., et al., Apoptosis in liver cancer (HepG2) cells induced by functionalized gold nanoparticles. Colloids Surf B Biointerfaces, 2014. 123: p. 549-56.
44. Namvar, F., et al., Cytotoxic effect of magnetic iron oxide nanoparticles synthesized via seaweed aqueous extract. Int J Nanomedicine, 2014. 9: p. 2479-88.
45. Seo, D.Y., et al., Investigation of the genetic toxicity by dextran-coated superparamagnetic iron oxide nanoparticles (SPION) in HepG2 cells using the comet assay and cytokinesis-block micronucleus assay. Toxicology and Environmental Health Sciences, 2017. 9(1): p. 23-29.
46. Sulheim, E., et al., Cytotoxicity of Poly(Alkyl Cyanoacrylate) Nanoparticles. Int J Mol Sci, 2017. 18(11).
47. Sulheim, E., et al., Cellular uptake and intracellular degradation of poly(alkyl cyanoacrylate) nanoparticles. Journal of Nanobiotechnology, 2016. 14(1): p. 1.
48. Duan, J., et al., Cationic Polybutyl Cyanoacrylate Nanoparticles for DNA Delivery. Journal of Biomedicine and Biotechnology, 2009. 2009: p. 149254.
49. Ramboer, E., et al., Immortalized Human Hepatic Cell Lines for In Vitro Testing and Research Purposes. Methods Mol Biol, 2015. 1250: p. 53-76.
50. Prozialeck, W.C., et al., Epithelial barrier characteristics and expression of cell adhesion molecules in proximal tubule-derived cell lines commonly used for in vitro toxicity studies. Toxicol In Vitro, 2006. 20(6): p. 942-53.
51. Chamberlain, L.M., et al., Phenotypic non-equivalence of murine (monocyte-) macrophage cells in biomaterial and inflammatory models. J Biomed Mater Res A, 2009. 88(4): p. 858-71.
52. Milyavsky, M., et al., Prolonged culture of telomerase-immortalized human fibroblasts leads to a premalignant phenotype. Cancer Res, 2003. 63(21): p. 7147-57.
53. Ramboer, E., et al., Immortalized Human Hepatic Cell Lines for In Vitro Testing and Research Purposes. Methods in molecular biology (Clifton, N.J.), 2015. 1250: p. 53-76.
54. Soars, M.G., et al., The pivotal role of hepatocytes in drug discovery. Chem Biol Interact, 2007. 168(1): p. 2-15.
55. Zhou, Z., M.J. Xu, and B. Gao, Hepatocytes: a key cell type for innate immunity. Cell Mol Immunol, 2016. 13(3): p. 301-15.
56. Ponsoda, X., et al., Drug biotransformation by human hepatocytes. In vitro/in vivo metabolism by cells from the same donor. J Hepatol, 2001. 34(1): p. 19-25.
57. Gomez-Lechon, M.J., et al., Human hepatocytes as a tool for studying toxicity and drug metabolism. Curr Drug Metab, 2003. 4(4): p. 292-312.
58. Gomez-Lechon, M.J., et al., Human hepatocytes in primary culture: the choice to investigate drug metabolism in man. Curr Drug Metab, 2004. 5(5): p. 443-62.
59. Knobeloch, D., et al., Human hepatocytes: isolation, culture, and quality procedures. Methods Mol Biol, 2012. 806: p. 99-120.
60. Rodriguez-Antona, C., et al., Cytochrome P450 expression in human hepatocytes and hepatoma cell lines: molecular mechanisms that determine lower expression in cultured cells. Xenobiotica, 2002. 32(6): p. 505-20.
61. Ranga, A., N. Gjorevski, and M.P. Lutolf, Drug discovery through stem cell-based organoid models. Adv Drug Deliv Rev, 2014. 69-70: p. 19-28.
62. Hartung, T. and G. Daston, Are in vitro tests suitable for regulatory use? Toxicol Sci, 2009. 111(2): p. 233-7.
63. Abdel-Misih, S.R. and M. Bloomston, Liver anatomy. Surg Clin North Am, 2010. 90(4): p. 643-53.
64. Granitzny, A., et al., Evaluation of a human in vitro hepatocyte-NPC co-culture model for the prediction of idiosyncratic drug-induced liver injury: A pilot study. Toxicol Rep, 2017. 4: p. 89-103.
65. Bale, S.S., et al., Isolation and co-culture of rat parenchymal and non-parenchymal liver cells to evaluate cellular interactions and response. Sci Rep, 2016. 6: p. 25329.
66. Ha, S.-W., et al., Chapter 4 - Applications of silica-based nanomaterials in dental and skeletal biology, in Nanobiomaterials in Clinical Dentistry (Second Edition), K. Subramani and W. Ahmed, Editors. 2019, Elsevier. p. 77-112.
67. Godoy, P., et al., Recent advances in 2D and 3D in vitro systems using primary hepatocytes, alternative hepatocyte sources and non-parenchymal liver cells and their use in investigating mechanisms of hepatotoxicity, cell signaling and ADME. Arch Toxicol, 2013. 87(8): p. 1315-530.
68. Bale, S.S., et al., Long-term coculture strategies for primary hepatocytes and liver sinusoidal endothelial cells. Tissue Eng Part C Methods, 2015. 21(4): p. 413-22.
69. Ohno, M., et al., Induction of drug-metabolizing enzymes by phenobarbital in layered co-culture of a human liver cell line and endothelial cells. Biol Pharm Bull, 2009. 32(5): p. 813-7.
70. Adams, D.H., et al., Mechanisms of immune-mediated liver injury. Toxicol Sci, 2010. 115(2): p. 307-21.
71. West, M.A., et al., Further characterization of Kupffer cell/macrophage-mediated alterations in hepatocyte protein synthesis. Surgery, 1986. 100(2): p. 416-423.
72. Kegel, V., et al., Subtoxic Concentrations of Hepatotoxic Drugs Lead to Kupffer Cell Activation in a Human In Vitro Liver Model: An Approach to Study DILI. Mediators Inflamm, 2015. 2015: p. 640631.
73. Yagi, K., et al., Stimulation of liver functions in hierarchical co-culture of bone marrow cells and hepatocytes. Cytotechnology, 1998. 26(1): p. 5-12.
74. Ha, S.-W., et al., Applications of silica-based nanomaterials in dental and skeletal biology, in Nanobiomaterials in Clinical Dentistry, K. Subramani and W. Ahmed, Editors. 2019, Elsevier. p. 77-112.
75. Edling, Y., et al., Increased sensitivity for troglitazone-induced cytotoxicity using a human in vitro co-culture model. Toxicol In Vitro, 2009. 23(7): p. 1387-95.
76. Esch, M.B., et al., Body-on-a-chip simulation with gastrointestinal tract and liver tissues suggests that ingested nanoparticles have the potential to cause liver injury. Lab Chip, 2014. 14(16): p. 3081-92.
77. Duval, K., et al., Modeling Physiological Events in 2D vs. 3D Cell Culture. Physiology (Bethesda), 2017. 32(4): p. 266-277.
78. Olsavsky Goyak, K.M., E.M. Laurenzana, and C.J. Omiecinski, Hepatocyte differentiation. Methods Mol Biol, 2010. 640: p. 115-38.
79. Kapalczynska, M., et al., 2D and 3D cell cultures - a comparison of different types of cancer cell cultures. Arch Med Sci, 2018. 14(4): p. 910-919.
80. Gissen, P. and I.M. Arias, Structural and functional hepatocyte polarity and liver disease. J Hepatol, 2015. 63(4): p. 1023-37.
81. Bacon. B. R., O.G.J.G., Di Bisceglie. A. M., Lake. J. R, Comprehensive Clinical Hepatology
82. Gomez-Lechon, M.J., et al., Long-term expression of differentiated functions in hepatocytes cultured in three-dimensional collagen matrix. J Cell Physiol, 1998. 177(4): p. 553-62.
83. Wells, R.G., The role of matrix stiffness in regulating cell behavior. Hepatology, 2008. 47(4): p. 1394-400.
84. Bell, C.C., et al., Comparison of Hepatic 2D Sandwich Cultures and 3D Spheroids for Long-term Toxicity Applications: A Multicenter Study. Toxicological sciences : an official journal of the Society of Toxicology, 2018. 162(2): p. 655-666.
85. West, M.A., et al., Further characterization of Kupffer cell/macrophage-mediated alterations in hepatocyte protein synthesis. Surgery, 1986. 100(2): p. 416-23.
86. Mitragotri, S., et al., Drug Delivery Research for the Future: Expanding the Nano Horizons and Beyond. Journal of Controlled Release, 2017. 246: p. 183-184.
87. Yue, F., et al., A comparative encyclopedia of DNA elements in the mouse genome. Nature, 2014. 515(7527): p. 355-64.
88. Le Magnen, C., A. Dutta, and C. Abate-Shen, Optimizing mouse models for precision cancer prevention. Nat Rev Cancer, 2016. 16(3): p. 187-96.
89. Begley, C.G. and L.M. Ellis, Drug development: Raise standards for preclinical cancer research. Nature, 2012. 483(7391): p. 531-3.
90. Cook, N., D.I. Jodrell, and D.A. Tuveson, Predictive in vivo animal models and translation to clinical trials. Drug Discov Today, 2012. 17(5-6): p. 253-60.
91. Schachtschneider, K.M., et al., A validated, transitional and translational porcine model of hepatocellular carcinoma. Oncotarget, 2017. 8(38): p. 63620-63634.
92. Andrasina, T., et al., The Accumulation and Effects of Liposomal Doxorubicin in Tissues Treated by Radiofrequency Ablation and Irreversible Electroporation in Liver: In Vivo Experimental Study on Porcine Models. Cardiovasc Intervent Radiol, 2019. 42(5): p. 751-762.
93. Sieber, S., et al., Zebrafish as a preclinical in vivo screening model for nanomedicines. Advanced Drug Delivery Reviews, 2019. 151-152: p. 152-168.
94. Rennekamp, A.J. and R.T. Peterson, 15 years of zebrafish chemical screening. Curr Opin Chem Biol, 2015. 24: p. 58-70.
95. Peterson, R.T., et al., Small molecule developmental screens reveal the logic and timing of vertebrate development. Proc Natl Acad Sci U S A, 2000. 97(24): p. 12965-9.
96. Sieber, S., et al., Zebrafish as an early stage screening tool to study the systemic circulation of nanoparticulate drug delivery systems in vivo. J Control Release, 2017. 264: p. 180-191.
97. EC, Directive 2010/63/EU of the European Parliament and of the Council of 22 September 2020 on the Protection of Animals Used for Scientific Purposes. . 2010.
98. Goldsmith, P., Zebrafish as a pharmacological tool: the how, why and when. Current Opinion in Pharmacology, 2004. 4(5): p. 504-512.
99. Menke, A.L., et al., Normal Anatomy and Histology of the Adult Zebrafish. 2011. 39(5): p. 759-775.
100. Jung, H.M., et al., Development of the larval lymphatic system in zebrafish. Development, 2017. 144(11): p. 2070-2081.
101. Chen, A.T. and L.I. Zon, Zebrafish blood stem cells. J Cell Biochem, 2009. 108(1): p. 35-42.
102. Trede, N.S., et al., The use of zebrafish to understand immunity. Immunity, 2004. 20(4): p. 367-79.
103. Isogai, S., M. Horiguchi, and B.M. Weinstein, The vascular anatomy of the developing zebrafish: an atlas of embryonic and early larval development. Dev Biol, 2001. 230(2): p. 278-301.
104. Chu, J. and K.C. Sadler, New school in liver development: lessons from zebrafish. Hepatology (Baltimore, Md.), 2009. 50(5): p. 1656-1663.
105. Howe, K., et al., The zebrafish reference genome sequence and its relationship to the human genome. Nature, 2013. 496(7446): p. 498-503.
106. Vibe, C.B., et al., Thioridazine in PLGA nanoparticles reduces toxicity and improves rifampicin therapy against mycobacterial infection in zebrafish. Nanotoxicology, 2016. 10(6): p. 680-688.
107. Peng, K., et al., Cyclodextrin/dextran based drug carriers for a controlled release of hydrophobic drugs in zebrafish embryos. Soft Matter, 2010. 6(16): p. 3778-3783.
108. Yan, H., et al., Functional Mesoporous Silica Nanoparticles for Photothermal-Controlled Drug Delivery In Vivo. 2012. 51(33): p. 8373-8377.
109. Fomchenko, E.I. and E.C. Holland, Mouse models of brain tumors and their applications in preclinical trials. Clin Cancer Res, 2006. 12(18): p. 5288-97.
110. Huff, J., M.F. Jacobson, and D.L. Davis, The limits of two-year bioassay exposure regimens for identifying chemical carcinogens. Environ Health Perspect, 2008. 116(11): p. 1439-42.
111. Van Norman, G.A., Limitations of Animal Studies for Predicting Toxicity in Clinical Trials: Is it Time to Rethink Our Current Approach? JACC Basic Transl Sci, 2019. 4(7): p. 845-854.
112. Van Norman, G.A., Drugs, Devices, and the FDA: Part 1: An Overview of Approval Processes for Drugs. JACC: Basic to Translational Science, 2016. 1(3): p. 170-179.
113. Shanks, N., R. Greek, and J. Greek, Are animal models predictive for humans? Philosophy, ethics, and humanities in medicine : PEHM, 2009. 4: p. 2-2.
114. Greek, R. and A. Menache, Systematic reviews of animal models: methodology versus epistemology. International journal of medical sciences, 2013. 10(3): p. 206-221.
115. Hackam, D.G. and D.A. Redelmeier, Translation of research evidence from animals to humans. JAMA, 2006. 296(14): p. 1731-2.
116. Perel, P., et al., Comparison of treatment effects between animal experiments and clinical trials: systematic review. BMJ, 2007. 334(7586): p. 197.
117. Olson, H., et al., Concordance of the toxicity of pharmaceuticals in humans and in animals. Regul Toxicol Pharmacol, 2000. 32(1): p. 56-67.
118. Pound, P., et al., Where is the evidence that animal research benefits humans? BMJ, 2004. 328(7438): p. 514-7.
119. Bracken, M.B., Why animal studies are often poor predictors of human reactions to exposure. J R Soc Med, 2009. 102(3): p. 120-2.
120. Xu, J.J., D. Diaz, and P.J. O'Brien, Applications of cytotoxicity assays and pre-lethal mechanistic assays for assessment of human hepatotoxicity potential. Chem Biol Interact, 2004. 150(1): p. 115-28.
121. McKenzie, R., et al., Hepatic failure and lactic acidosis due to fialuridine (FIAU), an investigational nucleoside analogue for chronic hepatitis B. N Engl J Med, 1995. 333(17): p. 1099-105.
122. Institute of Medicine Committee to Review the Fialuridine Clinical, T., in Review of the Fialuridine (FIAU) Clinical Trials, F.J. Manning and M. Swartz, Editors. 1995, National Academies Press (US): Washington (DC).
123. Attarwala, H., TGN1412: From Discovery to Disaster. J Young Pharm, 2010. 2(3): p. 332-6.
124. Xu, D., et al., Fialuridine induces acute liver failure in chimeric TK-NOG mice: a model for detecting hepatic drug toxicity prior to human testing. PLoS Med, 2014. 11(4): p. e1001628.
125. Babai, S., L. Auclert, and H. Le-Louet, Safety data and withdrawal of hepatotoxic drugs. Therapie, 2018.
126. Villano, J.L., D. Mehta, and L. Radhakrishnan, Abraxane induced life-threatening toxicities with metastatic breast cancer and hepatic insufficiency. Invest New Drugs, 2006. 24(5): p. 455-6.
127. Socinski, M., Update on nanoparticle albumin-bound paclitaxel. Clin Adv Hematol Oncol, 2006. 4(10): p. 745-6.
128. Bracken, M.B., Why animal studies are often poor predictors of human reactions to exposure. Journal of the Royal Society of Medicine, 2009. 102(3): p. 120-122.
129. Administration, U.S.F.a.D., Investigational New Drug (IND) Application. U.S. Food and Drug Administration. 2017.
130. Zhang, D., et al., Preclinical experimental models of drug metabolism and disposition in drug discovery and development. Acta Pharmaceutica Sinica B, 2012. 2(6): p. 549-561.
131. Akhtar, A., The flaws and human harms of animal experimentation. Camb Q Healthc Ethics, 2015. 24(4): p. 407-19.
132. Di Cristo, L., et al., Towards the Identification of an In Vitro Tool for Assessing the Biological Behavior of Aerosol Supplied Nanomaterials. Int J Environ Res Public Health, 2018. 15(4).
133. Bregoli, L., et al., Nanomedicine applied to translational oncology: A future perspective on cancer treatment. Nanomedicine, 2016. 12(1): p. 81-103.
134. Movia, D., et al., A safe-by-design approach to the development of gold nanoboxes as carriers for internalization into cancer cells. Biomaterials, 2014. 35(9): p. 2543-2557.
135. Movia, D., S. Bruni-Favier, and A. Prina-Mello, In vitro Alternatives to Acute Inhalation Toxicity Studies in Animal Models-A Perspective. Frontiers in bioengineering and biotechnology, 2020. 8: p. 549-549.
136. Movia, D. and A. Prina-Mello, Preclinical Development of Orally Inhaled Drugs (OIDs)-Are Animal Models Predictive or Shall We Move Towards In Vitro Non-Animal Models? Animals (Basel), 2020. 10(8).
137. Prina-Mello, A., et al., Editorial: Use of 3D Models in Drug Development and Precision Medicine - Advances and Outlook. Frontiers in Bioengineering and Biotechnology, 2021. 9(137).
138. Prina-Mello, D.M.a.A., Nanotoxicity in Cancer Research: Technical Protocols and Considerations for the Use of 3D Tumour Spheroids, Unraveling the Safety Profile of Nanoscale Particles and Materials, in From Biomedical to Environmental Applications. 2017: IntechOpen.
139. Alepee, N., et al., State-of-the-art of 3D cultures (organs-on-a-chip) in safety testing and pathophysiology. ALTEX, 2014. 31(4): p. 441-77.
140. Fleddermann, J., et al., Distribution of SiO2 nanoparticles in 3D liver microtissues. Int J Nanomedicine, 2019. 14: p. 1411-1431.
141. Ozkan, A., et al., In vitro vascularized liver and tumor tissue microenvironments on a chip for dynamic determination of nanoparticle transport and toxicity. Biotechnol Bioeng, 2019. 116(5): p. 1201-1219.
142. Otieno, M.A., J. Gan, and W. Proctor, Status and Future of 3D Cell Culture in Toxicity Testing, in Drug-Induced Liver Toxicity, M. Chen and Y. Will, Editors. 2018, Springer New York: New York, NY. p. 249-261.
143. Duval, K., et al., Modeling Physiological Events in 2D vs. 3D Cell Culture. Physiology (Bethesda, Md.), 2017. 32(4): p. 266-277.
144. Fang, Y. and R.M. Eglen, Three-Dimensional Cell Cultures in Drug Discovery and Development. SLAS Discov, 2017. 22(5): p. 456-472.
145. Deng, J., et al., Engineered Liver-on-a-Chip Platform to Mimic Liver Functions and Its Biomedical Applications: A Review. Micromachines (Basel), 2019. 10(10): p. 676.
146. Dunn, J.C., R.G. Tompkins, and M.L. Yarmush, Hepatocytes in collagen sandwich: evidence for transcriptional and translational regulation. J Cell Biol, 1992. 116(4): p. 1043-53.
147. Dunn, J.C., R.G. Tompkins, and M.L. Yarmush, Long-term in vitro function of adult hepatocytes in a collagen sandwich configuration. Biotechnol Prog, 1991. 7(3): p. 237-45.
148. Dunn, J.C., et al., Hepatocyte function and extracellular matrix geometry: long-term culture in a sandwich configuration. FASEB J, 1989. 3(2): p. 174-7.
149. Molina-Jimenez, F., et al., Matrigel-embedded 3D culture of Huh-7 cells as a hepatocyte-like polarized system to study hepatitis C virus cycle. Virology, 2012. 425(1): p. 31-9.
150. Swift, B., N.D. Pfeifer, and K.L.R. Brouwer, Sandwich-cultured hepatocytes: an in vitro model to evaluate hepatobiliary transporter-based drug interactions and hepatotoxicity. Drug metabolism reviews, 2010. 42(3): p. 446-471.
151. Liu, X., et al., Partial maintenance of taurocholate uptake by adult rat hepatocytes cultured in a collagen sandwich configuration. Pharm Res, 1998. 15(10): p. 1533-9.
152. Molina-Jimenez, F., et al., Matrigel-embedded 3D culture of Huh-7 cells as a hepatocyte-like polarized system to study hepatitis C virus cycle. Virology, 2012. 425(1): p. 31-39.
153. Ruoss, M., et al., A Standardized Collagen-Based Scaffold Improves Human Hepatocyte Shipment and Allows Metabolic Studies over 10 Days. Bioengineering (Basel), 2018. 5(4): p. 86.
154. Lee, J., et al., In vitro toxicity testing of nanoparticles in 3D cell culture. Small, 2009. 5(10): p. 1213-21.
155. Haldar, S., D. Lahiri, and P. Roy, Chapter 5 - 3D Print Technology for Cell Culturing, in 3D Printing Technology in Nanomedicine, N. Ahmad, P. Gopinath, and R. Dutta, Editors. 2019, Elsevier. p. 83-114.
156. Chang, R., et al., Biofabrication of a three-dimensional liver micro-organ as an in vitro drug metabolism model. Biofabrication, 2010. 2(4): p. 045004.
157. Ma, X., et al., Deterministically patterned biomimetic human iPSC-derived hepatic model via rapid 3D bioprinting. Proc Natl Acad Sci U S A, 2016. 113(8): p. 2206-11.
158. Nguyen, A.H., et al., MMP-mediated mesenchymal morphogenesis of pluripotent stem cell aggregates stimulated by gelatin methacrylate microparticle incorporation. Biomaterials, 2016. 76: p. 66-75.
159. Nguyen, D.G., et al., Bioprinted 3D Primary Liver Tissues Allow Assessment of Organ-Level Response to Clinical Drug Induced Toxicity In Vitro. PLoS One, 2016. 11(7): p. e0158674.
160. Pampaloni, F. and E. Stelzer, Three-dimensional cell cultures in toxicology. Biotechnol Genet Eng Rev, 2010. 26: p. 117-38.
161. Wong, S.F., et al., Concave microwell based size-controllable hepatosphere as a three-dimensional liver tissue model. Biomaterials, 2011. 32(32): p. 8087-96.
162. Friedrich, J., et al., Spheroid-based drug screen: considerations and practical approach. Nat Protoc, 2009. 4(3): p. 309-24.
163. Foty, R., A simple hanging drop cell culture protocol for generation of 3D spheroids. Journal of visualized experiments : JoVE, 2011(51): p. 2720.
164. Achilli, T.-M., J. Meyer, and J.R. Morgan, Advances in the formation, use and understanding of multi-cellular spheroids. Expert opinion on biological therapy, 2012. 12(10): p. 1347-1360.
165. Otsuka, H., et al., Micropatterned co-culture of hepatocyte spheroids layered on non-parenchymal cells to understand heterotypic cellular interactions. Science and technology of advanced materials, 2013. 14(6): p. 065003-065003.
166. Edmondson, R., et al., Three-dimensional cell culture systems and their applications in drug discovery and cell-based biosensors. Assay and drug development technologies, 2014. 12(4): p. 207-218.
167. Chang, T.T. and M. Hughes-Fulford, Monolayer and spheroid culture of human liver hepatocellular carcinoma cell line cells demonstrate distinct global gene expression patterns and functional phenotypes. Tissue Eng Part A, 2009. 15(3): p. 559-67.
168. Fey, S.J. and K. Wrzesinski, Determination of drug toxicity using 3D spheroids constructed from an immortal human hepatocyte cell line. Toxicol Sci, 2012. 127(2): p. 403-11.
169. Vorrink, S.U., et al., Prediction of Drug-Induced Hepatotoxicity Using Long-Term Stable Primary Hepatic 3D Spheroid Cultures in Chemically Defined Conditions. Toxicol Sci, 2018. 163(2): p. 655-665.
170. Messner, S., et al., Multi-cell type human liver microtissues for hepatotoxicity testing. Arch Toxicol, 2013. 87(1): p. 209-13.
171. Tostoes, R.M., et al., Human liver cell spheroids in extended perfusion bioreactor culture for repeated-dose drug testing. Hepatology, 2012. 55(4): p. 1227-36.
172. Peshwa, M.V., et al., Mechanistics of formation and ultrastructural evaluation of hepatocyte spheroids. In Vitro Cell Dev Biol Anim, 1996. 32(4): p. 197-203.
173. Riccalton-Banks, L., et al., Long-term culture of functional liver tissue: three-dimensional coculture of primary hepatocytes and stellate cells. Tissue Eng, 2003. 9(3): p. 401-10.
174. Ramaiahgari, S.C., et al., A 3D in vitro model of differentiated HepG2 cell spheroids with improved liver-like properties for repeated dose high-throughput toxicity studies. Arch Toxicol, 2014. 88(5): p. 1083-95.
175. Elje, E., et al., Hepato(Geno)Toxicity Assessment of Nanoparticles in a HepG2 Liver Spheroid Model. Nanomaterials (Basel), 2020. 10(3).
176. Dubiak-Szepietowska, M., et al., Development of complex-shaped liver multicellular spheroids as a human-based model for nanoparticle toxicity assessment in vitro. Toxicol Appl Pharmacol, 2016. 294: p. 78-85.
177. Mikhail, A.S., S. Eetezadi, and C. Allen, Multicellular tumor spheroids for evaluation of cytotoxicity and tumor growth inhibitory effects of nanomedicines in vitro: a comparison of docetaxel-loaded block copolymer micelles and Taxotere(R). PLoS One, 2013. 8(4): p. e62630.
178. Huch, M., et al., Long-term culture of genome-stable bipotent stem cells from adult human liver. Cell, 2015. 160(1-2): p. 299-312.
179. Prior, N., P. Inacio, and M. Huch, Liver organoids: from basic research to therapeutic applications. Gut, 2019. 68(12): p. 2228-2237.
180. Akbari, S., et al., Next-Generation Liver Medicine Using Organoid Models. Front Cell Dev Biol, 2019. 7: p. 345.
181. Palazzolo, S., et al., An Effective Multi-Stage Liposomal DNA Origami Nanosystem for In Vivo Cancer Therapy. Cancers (Basel), 2019. 11(12).
182. de Graaf, I.A., et al., Preparation and incubation of precision-cut liver and intestinal slices for application in drug metabolism and toxicity studies. Nat Protoc, 2010. 5(9): p. 1540-51.
183. Palma, E., E.J. Doornebal, and S. Chokshi, Precision-cut liver slices: a versatile tool to advance liver research. Hepatol Int, 2019. 13(1): p. 51-57.
184. Wu, X., et al., Precision-cut human liver slice cultures as an immunological platform. J Immunol Methods, 2018. 455: p. 71-79.
185. Palma, E., E.J. Doornebal, and S. Chokshi, Precision-cut liver slices: a versatile tool to advance liver research. Hepatology International, 2019. 13(1): p. 51-57.
186. Olinga, P., et al., Rat liver slices as a tool to study LPS-induced inflammatory response in the liver. J Hepatol, 2001. 35(2): p. 187-94.
187. Dragoni, S., et al., Gold Nanoparticles Uptake and Cytotoxicity Assessed on Rat Liver Precision-Cut Slices. Toxicological Sciences, 2012. 128(1): p. 186-197.
188. Hui, A.Y. and S.L. Friedman, Molecular basis of hepatic fibrosis. Expert Rev Mol Med, 2003. 5(5): p. 1-23.
189. Bartucci, R., et al., Time-Resolved Quantification of Nanoparticle Uptake, Distribution, and Impact in Precision-Cut Liver Slices. Small, 2020. 16(21): p. 1906523.
190. van Midwoud, P.M., et al., A microfluidic approach for in vitro assessment of interorgan interactions in drug metabolism using intestinal and liver slices. Lab Chip, 2010. 10(20): p. 2778-86.
191. Vaira, V., et al., Preclinical model of organotypic culture for pharmacodynamic profiling of human tumors. Proceedings of the National Academy of Sciences, 2010. 107(18): p. 8352-8356.
192. Hattersley, S.M., J. Greenman, and S.J. Haswell, Study of ethanol induced toxicity in liver explants using microfluidic devices. Biomed Microdevices, 2011. 13(6): p. 1005-14.
193. Freeman, A.E. and R.M. Hoffman, In vivo-like growth of human tumors in vitro. Proc Natl Acad Sci U S A, 1986. 83(8): p. 2694-8.
194. Vaira, V., et al., Preclinical model of organotypic culture for pharmacodynamic profiling of human tumors. Proc Natl Acad Sci U S A, 2010. 107(18): p. 8352-6.
195. Piera, T., Organ Culture Model of Liver for the Study of Cancer Treatment for Hepatocellular Carcinoma. Cancer Research Journal, 2016. 4: p. 37.
196. Nath, S. and G.R. Devi, Three-dimensional culture systems in cancer research: Focus on tumor spheroid model. Pharmacol Ther, 2016. 163: p. 94-108.
197. Toh, Y.C., et al., A microfluidic 3D hepatocyte chip for drug toxicity testing. Lab Chip, 2009. 9(14): p. 2026-35.
198. Filippi, C., et al., Improvement of C3A cell metabolism for usage in bioartificial liver support systems. J Hepatol, 2004. 41(4): p. 599-605.
199. Gebhardt, R. and D. Mecke, Perifused monolayer cultures of rat hepatocytes as an improved in vitro system for studies on ureogenesis. Experimental Cell Research, 1979. 124(2): p. 349-359.
200. Bhatia, S.N. and D.E. Ingber, Microfluidic organs-on-chips. Nat Biotechnol, 2014. 32(8): p. 760-72.
201. Gerlach, J.C., et al., Use of primary human liver cells originating from discarded grafts in a bioreactor for liver support therapy and the prospects of culturing adult liver stem cells in bioreactors: a morphologic study. Transplantation, 2003. 76(5): p. 781-6.
202. Bhise, N.S., et al., Organ-on-a-chip platforms for studying drug delivery systems. J Control Release, 2014. 190: p. 82-93.
203. Gebhardt, R., et al., New hepatocyte in vitro systems for drug metabolism: metabolic capacity and recommendations for application in basic research and drug development, standard operation procedures. Drug Metab Rev, 2003. 35(2-3): p. 145-213.
204. Li, L., et al., A microfluidic 3D hepatocyte chip for hepatotoxicity testing of nanoparticles. Nanomedicine (Lond), 2019. 14(16): p. 2209-2226.
205. Liu, Y., S. Wang, and Y. Wang, Patterned Fibers Embedded Microfluidic Chips Based on PLA and PDMS for Ag Nanoparticle Safety Testing. Polymers (Basel), 2016. 8(11).
206. Wikswo, J.P., The relevance and potential roles of microphysiological systems in biology and medicine. Experimental biology and medicine (Maywood, N.J.), 2014. 239(9): p. 1061-1072.
207. Ashammakhi, N., et al., Microphysiological Systems: Next Generation Systems for Assessing Toxicity and Therapeutic Effects of Nanomaterials. 2020. 4(1): p. 1900589.
208. Esch, M.B., et al., Body-on-a-chip simulation with gastrointestinal tract and liver tissues suggests that ingested nanoparticles have the potential to cause liver injury. Lab on a chip, 2014. 14(16): p. 3081-3092.
209. Zhang, Y.S., Y.-N. Zhang, and W. Zhang, Cancer-on-a-chip systems at the frontier of nanomedicine. Drug discovery today, 2017. 22(9): p. 1392-1399.
210. Lee, S.A., et al., Spheroid-based three-dimensional liver-on-a-chip to investigate hepatocyte-hepatic stellate cell interactions and flow effects. Lab Chip, 2013. 13(18): p. 3529-37.
211. Louhimies, S., Directive 86/609/EEC on the protection of animals used for experimental and other scientific purposes. Altern Lab Anim, 2002. 30 Suppl 2: p. 217-9.
212. Segovia-Miranda, F., et al., Three-dimensional spatially resolved geometrical and functional models of human liver tissue reveal new aspects of NAFLD progression. Nat Med, 2019. 25(12): p. 1885-1893.
213. Neff, E.P., Printing cures: Organovo advances with 3D-printed liver tissue. Lab Anim (NY), 2017. 46(3): p. 57.
214. Tolikas, M., A. Antoniou, and D.E. Ingber, The Wyss institute: A new model for medical technology innovation and translation across the academic-industrial interface. Bioeng Transl Med, 2017. 2(3): p. 247-257.
215. Conway, G.E., et al., Adaptation of the in vitro micronucleus assay for genotoxicity testing using 3D liver models supporting longer-term exposure durations. Mutagenesis, 2020.
216. Au - Llewellyn, S.V., et al., Advanced 3D Liver Models for In vitro Genotoxicity Testing Following Long-Term Nanomaterial Exposure. JoVE, 2020(160): p. e61141.
217. Kermanizadeh, A., et al., The importance of inter-individual Kupffer cell variability in the governance of hepatic toxicity in a 3D primary human liver microtissue model. Scientific Reports, 2019. 9(1): p. 7295.
218. Barosova, H., et al., An In Vitro Lung System to Assess the Proinflammatory Hazard of Carbon Nanotube Aerosols. Int J Mol Sci, 2020. 21(15).
219. Au - Braakhuis, H.M., et al., An Air-liquid Interface Bronchial Epithelial Model for Realistic, Repeated Inhalation Exposure to Airborne Particles for Toxicity Testing. JoVE, 2020(159): p. e61210.
220. Au - Barosova, H., et al., Multicellular Human Alveolar Model Composed of Epithelial Cells and Primary Immune Cells for Hazard Assessment. JoVE, 2020(159): p. e61090.
221. Ude, V.C., et al., Using 3D gastrointestinal tract in vitro models with microfold cells and mucus secreting ability to assess the hazard of copper oxide nanomaterials. J Nanobiotechnology, 2019. 17(1): p. 70.
222. Goulart, E., et al., 3D bioprinting of liver spheroids derived from human induced pluripotent stem cells sustain liver function and viability in vitro. Biofabrication, 2019. 12(1): p. 015010.
223. Yang, H., et al., Three-dimensional bioprinted hepatorganoids prolong survival of mice with liver failure. Gut, 2020: p. gutjnl-2019-319960.
224. Wang, L., et al., Automated quantitative assessment of three-dimensional bioprinted hydrogel scaffolds using optical coherence tomography. Biomed Opt Express, 2016. 7(3): p. 894-910.
225. Kizawa, H., et al., Scaffold-free 3D bio-printed human liver tissue stably maintains metabolic functions useful for drug discovery. Biochemistry and Biophysics Reports, 2017. 10: p. 186-191.
226. NCATS. https://ncats.nih.gov/pubs/features/3d-bioprinting. 2018; Available from: https://ncats.nih.gov/pubs/features/3d-bioprinting.
227. Livingston, C.A., K.M. Fabre, and D.A. Tagle, Facilitating the commercialization and use of organ platforms generated by the microphysiological systems (Tissue Chip) program through public–private partnerships. Computational and Structural Biotechnology Journal, 2016. 14: p. 207-210.
228. Kaiser, J. Seven years later, NIH center that aims to speed drugs to market faces challenges. 2019 [cited 2022 04/01]; Available from: https://www.sciencemag.org/news/2019/09/seven-years-later-nih-center-aims-speed-drugs-market-faces-challenges.
229. Zhang, Y.S., et al., 3D Bioprinting for Tissue and Organ Fabrication. Ann Biomed Eng, 2017. 45(1): p. 148-163.
230. Brownell, L. A swifter way towards 3D-printed organs. 2019 [cited 2022 04/01]; Available from: https://wyss.harvard.edu/news/a-swifter-way-towards-3d-printed-organs/.
231. Huh, D., et al., Reconstituting organ-level lung functions on a chip. Science, 2010. 328(5986): p. 1662-8.
232. Herland, A., et al., Quantitative prediction of human pharmacokinetic responses to drugs via fluidically coupled vascularized organ chips. Nature Biomedical Engineering, 2020. 4(4): p. 421-436.
233. Novak, R., et al., Robotic fluidic coupling and interrogation of multiple vascularized organ chips. Nature Biomedical Engineering, 2020. 4(4): p. 407-420.