1. Debroy T, Wei HL, Zuback JS, et al (2018) Progress in Materials Science Additive manufacturing of metallic components – Process , structure and properties. Prog Mater Sci 92:112–224. https://doi.org/10.1016/j.pmatsci.2017.10.001
2. Schmidt M, Merklein M, Bourell D, et al (2017) Laser based additive manufacturing in industry and academia. CIRP Ann 66:561–583. https://doi.org/10.1016/j.cirp.2017.05.011
3. European Powder Metallurgy Association EA (2012) Introduction to Additive Manufacturing Technology. 1–44
4. Zhang B, Li Y, Bai Q (2017) Defect formation mechanisms in selective laser melting: a review. Chin J Mech Eng 30:. https://doi.org/10.1007/s10033-017-0121-5
5. Tofail SAM, Koumoulos EP, Bandyopadhyay A, et al (2018) Additive manufacturing: scientific and technological challenges, market uptake and opportunities. Mater Today 21:22–37. https://doi.org/10.1016/j.mattod.2017.07.001
6. Azam FI, Majdi A, Rani A, et al (2018) An In-Depth Review on Direct Additive Manufacturing of Metals An In-Depth Review on Direct Additive Manufacturing of Metals. https://doi.org/10.1088/1757-899X/328/1/012005
7. Keshavarzkermani A, Sadowski M, Ladani L (2018) Direct metal laser melting of Inconel 718: Process impact on grain formation and orientation. J Alloys Compd 736:297–305. https://doi.org/10.1016/j.jallcom.2017.11.130
8. Hosseini E, Popovich VA (2019) A review of mechanical properties of additively manufactured Inconel 718. Addit Manuf 30:100877. https://doi.org/10.1016/j.addma.2019.100877
9. Cooke S, Ahmadi K, Willerth S, Herring R (2020) Metal additive manufacturing: Technology, metallurgy and modelling. J Manuf Process 57:978–1003. https://doi.org/10.1016/j.jmapro.2020.07.025
10. Moussaoui K, Rubio W, Mousseigne M, et al (2018) Effects of Selective Laser Melting additive manufacturing parameters of Inconel 718 on porosity, microstructure and mechanical properties. Mater Sci Eng A 735:182–190. https://doi.org/10.1016/j.msea.2018.08.037
11. Babu SS, Love L, Dehoff R, et al (2015) Additive manufacturing of materials: Opportunities and challenges. MRS Bull 40:1154–1161. https://doi.org/10.1557/mrs.2015.234
12. Chlebus E, Gruber K, Kuźnicka B, et al (2015) Effect of heat treatment on the microstructure and mechanical properties of Inconel 718 processed by selective laser melting. Mater Sci Eng A 639:647–655. https://doi.org/10.1016/j.msea.2015.05.035
13. Zhong C, Gasser A, Kittel J, et al (2016) Improvement of material performance of Inconel 718 formed by high deposition-rate laser metal deposition. Mater Des 98:128–134. https://doi.org/10.1016/j.matdes.2016.03.006
14. Smith DH, Bicknell J, Jorgensen L, et al (2016) Microstructure and mechanical behavior of direct metal laser sintered Inconel alloy 718. Mater Charact 113:1–9. https://doi.org/10.1016/j.matchar.2016.01.003
15. Peng H, Shi Y, Gong S, et al (2018) Microstructure , mechanical properties and cracking behaviour in a γ ′ - precipitation strengthened nickel-base superalloy fabricated by electron beam melting. Mater Des 159:155–169. https://doi.org/10.1016/j.matdes.2018.08.054
16. Ni M, Chen C, Wang X, et al (2017) Anisotropic tensile behavior of in situ precipitation strengthened Inconel 718 fabricated by additive manufacturing. Mater Sci Eng A 701:344–351. https://doi.org/10.1016/j.msea.2017.06.098
17. Yeh A, Lu K, Kuo C, et al (2011) Effect of serrated grain boundaries on the creep property of Inconel 718 superalloy. Mater Sci Eng A 530:525–529. https://doi.org/10.1016/j.msea.2011.10.014
18. Tucho WM, Cuvillier P, Sjolyst-Kverneland A, Hansen V (2017) Microstructure and hardness studies of Inconel 718 manufactured by selective laser melting before and after solution heat treatment. Mater Sci Eng A 689:220–232. https://doi.org/10.1016/j.msea.2017.02.062
19. Zhou N, Lv DC, Zhang HL, et al (2014) ScienceDirect Computer simulation of phase transformation and plastic deformation in IN718 superalloy : Microstructural evolution during precipitation. 65:270–286. https://doi.org/10.1016/j.actamat.2013.10.069
20. Lee S, Rasoolian B, Silva DF, et al (2021) Surface roughness parameter and modeling for fatigue behavior of additive manufactured parts : A non-destructive data-driven approach. Addit Manuf 46:102094. https://doi.org/10.1016/j.addma.2021.102094
21. Periane S, Duchosal A, Vaudreuil S, et al (2019) Machining influence on the fatigue resistance of Inconel 718 fabricated by Selective Laser Melting (SLM). Procedia Struct Integr 19:415–422. https://doi.org/10.1016/j.prostr.2019.12.045
22. Sharman A, Dewes RC, Aspinwall DK (2001) Tool life when high speed ball nose end milling Inconel 718TM. J Mater Process Technol 118:29–35. https://doi.org/10.1016/S0924-0136(01)00855-X
23. Shokrani A, Dhokia V, Newman ST (2012) Environmentally conscious machining of difficult-to-machine materials with regard to cutting fluids. Int J Mach Tools Manuf 57:83–101. https://doi.org/10.1016/j.ijmachtools.2012.02.002
24. Rinaldi S, Imbrogno S, Rotella G, et al (2019) Physics based modeling of machining Inconel 718 to predict surface integrity modification. Procedia CIRP 82:350–355. https://doi.org/10.1016/j.procir.2019.04.150
25. Zhu D, Zhang X, Ding H (2013) Tool wear characteristics in machining of nickel-based superalloys. Int J Mach Tools Manuf 64:60–77. https://doi.org/10.1016/j.ijmachtools.2012.08.001
26. Zhang RY, Qin HL, Bi ZN, et al (2020) Evolution of Lattice Spacing of Gamma Double Prime Precipitates During Aging of Polycrystalline Ni-Base Superalloys: An In Situ Investigation. Metall Mater Trans A Phys Metall Mater Sci 51:574–585. https://doi.org/10.1007/s11661-019-05536-y
27. Tool-life-and-cutting-forces-in-end-milling-Inconel-718-under-dry-and-minimum-quantity-cooling-lubrication-cutting-conditions_2012_Journal-of-Cleaner-
28. Musfirah AH, Ghani JA, Haron CHCC, et al (2017) Tool wear and surface integrity of inconel 718 in dry and cryogenic coolant at high cutting speed. Wear 376–377:125–133. https://doi.org/10.1016/j.wear.2017.01.031
29. Aramesh M, Montazeri S, Veldhuis SC (2018) A novel treatment for cutting tools for reducing the chipping and improving tool life during machining of Inconel 718. Wear 414–415:79–88. https://doi.org/10.1016/j.wear.2018.08.002
30. Jeyapandiarajan P, Xavior MA (2017) Experimental Investigations on the Machinability of Inconel 718 Under Different Cutting Conditions. 38:295–304
31. Shokrani A, Dhokia V, Newman ST (2017) Hybrid Cooling and Lubricating Technology for CNC Milling of Inconel 718 Nickel Alloy. Procedia Manuf 11:625–632. https://doi.org/10.1016/j.promfg.2017.07.160
32. Oliveira ARF, da Silva LRR, Baldin V, et al (2021) Effect of tool wear on the surface integrity of Inconel 718 in face milling with cemented carbide tools. Wear 476:203752. https://doi.org/10.1016/j.wear.2021.203752
33. Addona DMD, Raykar SJ, Narke MM, et al (2017) High Speed Machining of Inconel 718: Tool Wear and Surface Roughness Analysis. Procedia CIRP 62:269–274. https://doi.org/10.1016/j.procir.2017.03.004
34. Xu J, Ma T, Peng RL, Hosseini S (2021) Effect of post-processes on the microstructure and mechanical properties of laser powder bed fused IN718 superalloy. Addit Manuf 48:102416. https://doi.org/10.1016/j.addma.2021.102416
35. Niang a (2010) Contribution à l’étude de la précipitation des phases intermétalliques dans l’alliage 718. Thèse
36. Periane S, Duchosal A, Vaudreuil S, et al (2020) Selection of machining condition on surface integrity of additive and conventional Inconel 718. Procedia CIRP 87:333–338. https://doi.org/10.1016/j.procir.2020.02.092
37. Kouraytem N, Varga J, Amin-ahmadi B, et al (2021) A recrystallization heat-treatment to reduce deformation anisotropy of additively manufactured Inconel 718. Mater Des 198:109228. https://doi.org/10.1016/j.matdes.2020.109228
38. Kuo YL, Horikawa S, Kakehi K (2017) Effects of build direction and heat treatment on creep properties of Ni-base superalloy built up by additive manufacturing. Scr Mater 129:74–78. https://doi.org/10.1016/j.scriptamat.2016.10.035
39. Quan Y, He Z, Dou Y (2008) Cutting heat dissipation in high-speed machining of carbon steel based on the calorimetric method. Front Mech Eng China 3:175–179. https://doi.org/10.1007/s11465-008-0022-5
40. Akhyar Ibrahim G, Che Haron CH, Abdul Ghani J, et al (2011) Performance of PVD-coated carbide tools when turning inconel 718 in dry machining. Adv Mech Eng 2011:. https://doi.org/10.1155/2011/790975
41. Ezugwu EO, Wang ZM, Machado AR (1998) The machinability of nickel-based alloys: A review. J Mater Process Technol 86:1–16. https://doi.org/10.1016/S0924-0136(98)00314-8
42. Priyadarshini A, Pal SK, Samantaray AK (2012) Finite element modeling of chip formation in orthogonal machining. Stat Comput Tech Manuf 9783642258:101–144. https://doi.org/10.1007/978-3-642-25859-6_3
43. Rakesh M, Datta S (2020) Machining of Inconel 718 Using Coated WC Tool: Effects of Cutting Speed on Chip Morphology and Mechanisms of Tool Wear. Arab J Sci Eng 45:797–816. https://doi.org/10.1007/s13369-019-04171-4
44. Wang C, Xie Y, Zheng L, et al (2014) Research on the Chip Formation Mechanism during the high-speed milling of hardened steel. Int J Mach Tools Manuf 79:31–48. https://doi.org/10.1016/j.ijmachtools.2014.01.002