1 Siegel, R. L., Miller, K. D. & Jemal, A. Cancer statistics, 2019. CA Cancer J Clin69, 7-34, doi:10.3322/caac.21551 (2019).
2 Bijlsma, M. F. & van Laarhoven, H. W. The conflicting roles of tumor stroma in pancreatic cancer and their contribution to the failure of clinical trials: a systematic review and critical appraisal. Cancer Metastasis Rev, doi:10.1007/s10555-014-9541-1 (2015).
3 Longati, P. et al. 3D pancreatic carcinoma spheroids induce a matrix-rich, chemoresistant phenotype offering a better model for drug testing. BMC Cancer13, 95, doi:10.1186/1471-2407-13-95 (2013).
4 Chang, Q., Jurisica, I., Do, T. & Hedley, D. W. Hypoxia predicts aggressive growth and spontaneous metastasis formation from orthotopically grown primary xenografts of human pancreatic cancer. Cancer Res71, 3110-3120, doi:10.1158/0008-5472.CAN-10-4049 (2011).
5 Rucki, A. A. et al. Heterogeneous Stromal Signaling within the Tumor Microenvironment Controls the Metastasis of Pancreatic Cancer. Cancer Res, doi:10.1158/0008-5472.CAN-16-1383 (2016).
6 Chaika, N. V. et al. Differential expression of metabolic genes in tumor and stromal components of primary and metastatic loci in pancreatic adenocarcinoma. PLoS One7, e32996, doi:10.1371/journal.pone.0032996 (2012).
7 Ngoi, N. Y. L. et al. Targeting Cell Metabolism as Cancer Therapy. Antioxid Redox Signal32, 285-308, doi:10.1089/ars.2019.7947 (2020).
8 Biancur, D. E. & Kimmelman, A. C. The plasticity of pancreatic cancer metabolism in tumor progression and therapeutic resistance. Biochim Biophys Acta Rev Cancer1870, 67-75, doi:10.1016/j.bbcan.2018.04.011 (2018).
9 Zhang, J., Pavlova, N. N. & Thompson, C. B. Cancer cell metabolism: the essential role of the nonessential amino acid, glutamine. EMBO J.36, 1302-1315, doi:10.15252/embj.201696151 (2017).
10 DeBerardinis, R. J. & Cheng, T. Q's next: the diverse functions of glutamine in metabolism, cell biology and cancer. Oncogene29, 313-324, doi:10.1038/onc.2009.358 (2010).
11 Smolkova, K. et al. Waves of gene regulation suppress and then restore oxidative phosphorylation in cancer cells. Int J Biochem Cell Biol43, 950-968, doi:10.1016/j.biocel.2010.05.003 (2011).
12 Fan, J. et al. Glutamine-driven oxidative phosphorylation is a major ATP source in transformed mammalian cells in both normoxia and hypoxia. Mol. Syst. Biol.9, 712, doi:10.1038/msb.2013.65 (2013).
13 Seagroves, T. N. et al. Transcription factor HIF-1 is a necessary mediator of the pasteur effect in mammalian cells. Mol. Cell. Biol.21, 3436-3444, doi:10.1128/MCB.21.10.3436-3444.2001 (2001).
14 Robin, E. D., Murphy, B. J. & Theodore, J. Coordinate regulation of glycolysis by hypoxia in mammalian cells. J Cell Physiol118, 287-290, doi:10.1002/jcp.1041180311 (1984).
15 Fung, H. & Demple, B. A vital role for Ape1/Ref1 protein in repairing spontaneous DNA damage in human cells. Mol Cell17, 463-470 (2005).
16 Izumi, T. et al. Two essential but distinct functions of the mammalian abasic endonuclease. Proc Natl Acad Sci U S A102, 5739-5743, doi:10.1073/pnas.0500986102 (2005).
17 Jiang, Y. et al. Role of APE1 in differentiated neuroblastoma SH-SY5Y cells in response to oxidative stress: use of APE1 small molecule inhibitors to delineate APE1 functions. DNA Repair (Amst)8, 1273-1282, doi:S1568-7864(09)00214-6 [pii] 10.1016/j.dnarep.2009.08.003 (2009).
18 Kelley, M. R., Logsdon, D. & Fishel, M. L. Targeting DNA repair pathways for cancer treatment: what's new? Future Oncol10, 1215-1237, doi:10.2217/fon.14.60 (2014).
19 Gaiddon, C., Moorthy, N. C. & Prives, C. Ref-1 regulates the transactivation and pro-apoptotic functions of p53 in vivo. EMBO J18, 5609-5621, doi:10.1093/emboj/18.20.5609 (1999).
20 Lando, D., Pongratz, I., Poellinger, L. & Whitelaw, M. L. A redox mechanism controls differential DNA binding activities of hypoxia-inducible factor (HIF) 1alpha and the HIF-like factor. J Biol Chem275, 4618-4627 (2000).
21 Cardoso, A. A. et al. APE1/Ref-1 Regulates STAT3 Transcriptional Activity and APE1/Ref-1-STAT3 Dual-Targeting Effectively Inhibits Pancreatic Cancer Cell Survival. PLoS ONE7, e47462, doi:10.1371/journal.pone.0047462 (2012).
22 Kelley, M. R., Georgiadis, M. M. & Fishel, M. L. APE1/Ref-1Role in Redox Signaling: Translational Applications of Targeting the Redox Function of the DNA Repair/Redox Protein APE1/Ref-1. Current molecular pharmacology5, 36-53 (2012).
23 Fishel, M. L. et al. Apurinic/apyrimidinic endonuclease/redox factor-1 (APE1/Ref-1) redox function negatively regulates NRF2. J Biol Chem290, 3057-3068, doi:10.1074/jbc.M114.621995 (2015).
24 Shah, F. et al. Exploiting the Ref-1-APE1 node in cancer signaling and other diseases: from bench to clinic. npj Precision Oncology1, doi:10.1038/s41698-017-0023-0 (2017).
25 Shah, F. et al. APE1/Ref-1 knockdown in pancreatic ductal adenocarcinoma - characterizing gene expression changes and identifying novel pathways using single-cell RNA sequencing. Molecular oncology11, 1711-1732, doi:10.1002/1878-0261.12138 (2017).
26 Eales, K. L., Hollinshead, K. E. & Tennant, D. A. Hypoxia and metabolic adaptation of cancer cells. Oncogenesis5, e190, doi:10.1038/oncsis.2015.50 (2016).
27 Vaziri-Gohar, A., Zarei, M., Brody, J. R. & Winter, J. M. Metabolic Dependencies in Pancreatic Cancer. Front Oncol8, 617, doi:10.3389/fonc.2018.00617 (2018).
28 Tang, K. et al. Hypoxia-reprogrammed tricarboxylic acid cycle promotes the growth of human breast tumorigenic cells. Oncogene38, 6970-6984, doi:10.1038/s41388-019-0932-1 (2019).
29 Sharbeen, G., McCarroll, J., Goldstein, D. & Phillips, P. Exploiting Base Excision Repair to Improve Therapeutic Approaches for Pancreatic Cancer. Frontiers in Nutrition2, doi:10.3389/fnut.2015.00010 (2015).
30 Caston, R. A. et al. The multifunctional APE1 DNA repair–redox signaling protein as a drug target in human disease. Drug discovery today, doi:10.1016/j.drudis.2020.10.015 (2020).
31 Fishel, M. L. et al. Impact of APE1/Ref-1 redox inhibition on pancreatic tumor growth. Mol Cancer Ther10, 1698-1708, doi:1535-7163.MCT-11-0107 [pii] 10.1158/1535-7163.MCT-11-0107 (2011).
32 Jiang, Y., Zhou, S., Sandusky, G. E., Kelley, M. R. & Fishel, M. L. Reduced expression of DNA repair and redox signaling protein APE1/Ref-1 impairs human pancreatic cancer cell survival, proliferation, and cell cycle progression. Cancer Investigation28, 885-895 (2010).
33 Kelley, M. R. et al. Identification and Characterization of New Chemical Entities Targeting Apurinic/Apyrimidinic Endonuclease 1 for the Prevention of Chemotherapy-Induced Peripheral Neuropathy. J Pharmacol Exp Ther359, 300-309, doi:10.1124/jpet.116.235283 (2016).
34 McIlwain, D. W., Fishel, M. L., Boos, A., Kelley, M. R. & Jerde, T. J. APE1/Ref-1 redox-specific inhibition decreases survivin protein levels and induces cell cycle arrest in prostate cancer cells. Oncotarget9, 10962-10977 (2018).
35 Sardar Pasha, S. P. B. et al. Ref-1/APE1 Inhibition with Novel Small Molecules Blocks Ocular Neovascularization. J Pharmacol Exp Ther367, 108-118, doi:10.1124/jpet.118.248088 (2018).
36 Fishel, M. L. et al. Antitumor Activity and Mechanistic Characterization of APE1/Ref-1 Inhibitors in Bladder Cancer. Mol Cancer Ther18, 1947-1960, doi:10.1158/1535-7163.MCT-18-1166 (2019).
37 Alistar, A. et al. Safety and tolerability of the first-in-class agent CPI-613 in combination with modified FOLFIRINOX in patients with metastatic pancreatic cancer: a single-centre, open-label, dose-escalation, phase 1 trial. Lancet Oncol, doi:10.1016/S1470-2045(17)30314-5 (2017).
38 Lee, K. C. et al. Translational assessment of mitochondrial dysfunction of pancreatic cancer from in vitro gene microarray and animal efficacy studies, to early clinical studies, via the novel tumor-specific anti-mitochondrial agent, CPI-613. Ann Transl Med2, 91, doi:10.3978/j.issn.2305-5839.2014.05.08 (2014).
39 Stuart, S. D. et al. A strategically designed small molecule attacks alpha-ketoglutarate dehydrogenase in tumor cells through a redox process. Cancer Metab2, 4, doi:10.1186/2049-3002-2-4 (2014).
40 Jones, S. et al. Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science321, 1801-1806, doi:1164368 [pii]
10.1126/science.1164368 (2008).
41 Logsdon, D. P. et al. Regulation of HIF1alpha under Hypoxia by APE1/Ref-1 Impacts CA9 Expression: Dual Targeting in Patient-Derived 3D Pancreatic Cancer Models. Mol Cancer Ther15, 2722-2732, doi:10.1158/1535-7163.MCT-16-0253 (2016).
42 Richards, K. E. et al. Cancer-associated fibroblast exosomes regulate survival and proliferation of pancreatic cancer cells. Oncogene, doi:10.1038/onc.2016.353 (2016).
43 Principe, D. R. et al. Long-Term Gemcitabine Treatment Reshapes the Pancreatic Tumor Microenvironment and Sensitizes Murine Carcinoma to Combination Immunotherapy. Cancer Res, doi:10.1158/0008-5472.CAN-19-2959 (2020).
44 Wan, C. et al. LTMG: a novel statistical modeling of transcriptional expression states in single-cell RNA-Seq data. Nucleic Acids Res, doi:10.1093/nar/gkz655 (2019).
45 Wan, C. et al. in Association for the Advancement of Artificial Intelligence (2019).
46 Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A102, 15545-15550, doi:10.1073/pnas.0506580102 (2005).
47 Peck Justice, S. A. et al. Mutant thermal proteome profiling for characterization of missense protein variants and their associated phenotypes within the proteome. J Biol Chem, doi:10.1074/jbc.RA120.014576 (2020).
48 Levasseur, E. M. et al. Hypusine biosynthesis in beta cells links polyamine metabolism to facultative cellular proliferation to maintain glucose homeostasis. Sci Signal12, doi:10.1126/scisignal.aax0715 (2019).
49 Fan, Z. et al. Cleaving the oxidative repair protein Ape1 enhances cell death mediated by granzyme A. Nat Immunol4, 145-153 (2003).
50 Wang, D., Luo, M. & Kelley, M. R. Human apurinic endonuclease 1 (APE1) expression and prognostic significance in osteosarcoma: enhanced sensitivity of osteosarcoma to DNA damaging agents using silencing RNA APE1 expression inhibition. Mol Cancer Ther3, 679-686 (2004).
51 Fishel, M. L. et al. Knockdown of the DNA repair and redox signaling protein Ape1/Ref-1 blocks ovarian cancer cell and tumor growth. DNA Repair (Amst)7, 177-186, doi:S1568-7864(07)00330-8 [pii] 10.1016/j.dnarep.2007.09.008 (2008).
52 Fishel, M. L., Colvin, E. S., Luo, M., Kelley, M. R. & Robertson, K. A. Inhibition of the Redox Function of APE1/Ref-1 in Myeloid Leukemia Cell Lines Results in a Hypersensitive Response to Retinoic Acid-induced Differentiation and Apoptosis. Exp Hematol38, 1178-1188, doi:S0301-472X(10)00402-9 [pii] 10.1016/j.exphem.2010.08.011 (2010).
53 Logsdon, D. P. et al. Blocking HIF signaling via novel inhibitors of CA9 and APE1/Ref-1 dramatically affects pancreatic cancer cell survival. Sci Rep8, 13759, doi:10.1038/s41598-018-32034-9 (2018).
54 Sempere, L. F., Gunn, J. R. & Korc, M. A novel 3-dimensional culture system uncovers growth stimulatory actions by TGFbeta in pancreatic cancer cells. Cancer Biol Ther12, 198-207 (2011).
55 Arpin, C. C. et al. Applying Small Molecule Signal Transducer and Activator of Transcription-3 (STAT3) Protein Inhibitors as Pancreatic Cancer Therapeutics. Mol Cancer Ther15, 794-805, doi:10.1158/1535-7163.MCT-15-0003 (2016).
56 Lindblom, P. et al. Tesaglitazar, a dual PPAR-alpha/gamma agonist, hamster carcinogenicity, investigative animal and clinical studies. Toxicol Pathol40, 18-32, doi:10.1177/0192623311429972 (2012).
57 Ozcelikkale, A. et al. Differential response to doxorubicin in breast cancer subtypes simulated by a microfluidic tumor model. Journal of controlled release : official journal of the Controlled Release Society266, 129-139, doi:10.1016/j.jconrel.2017.09.024 (2017).
58 Kwak, B., Ozcelikkale, A., Shin, C. S., Park, K. & Han, B. Simulation of complex transport of nanoparticles around a tumor using tumor-microenvironment-on-chip. Journal of controlled release : official journal of the Controlled Release Society194, 157-167, doi:10.1016/j.jconrel.2014.08.027 (2014).
59 Shin, C. S., Kwak, B., Han, B. & Park, K. Development of an in vitro 3D tumor model to study therapeutic efficiency of an anticancer drug. Mol Pharm10, 2167-2175, doi:10.1021/mp300595a (2013).
60 Fitzmaurice, G. M., Laird, N. M. & Ware, J. H. in Statistics in Medicine (WIley Online Library, 2004).
61 Baran-Gale, J., Chandra, T. & Kirschner, K. Experimental design for single-cell RNA sequencing. Brief Funct Genomics17, 233-239, doi:10.1093/bfgp/elx035 (2018).
62 Ziegenhain, C. et al. Comparative Analysis of Single-Cell RNA Sequencing Methods. Mol Cell65, 631-643 e634, doi:10.1016/j.molcel.2017.01.023 (2017).
63 Zhang, Y. et al. M3S: a comprehensive model selection for multi-modal single-cell RNA sequencing data. BMC bioinformatics20, 672, doi:10.1186/s12859-019-3243-1 (2019).
64 Xie, J. et al. QUBIC2: a novel and robust biclustering algorithm for analyses and interpretation of large-scale RNA-Seq data. Bioinformatics36, 1143-1149, doi:10.1093/bioinformatics/btz692 (2020).
65 Luo, M. et al. Role of the multifunctional DNA repair and redox signaling protein Ape1/Ref-1 in cancer and endothelial cells: small-molecule inhibition of the redox function of Ape1. Antioxid Redox Signal10, 1853-1867, doi:10.1089/ars.2008.2120 (2008).
66 Kelley, M. R. et al. Functional Analysis of Novel Analogs of E3330 That Block the Redox Signaling Activity of the Multifunctional AP Endonuclease/Redox Signaling Enzyme APE1/Ref-1. Antioxid Redox Signal14, 1387-1401, doi:10.1089/ars.2010.3410 (2011).
67 Moon, H. R. et al. An engineered pancreatic cancer model with intra-tumoral heterogeneity of driver mutations. Lab on a chip20, 3720-3732, doi:10.1039/d0lc00707b (2020).
68 Zhou, Y. et al. Intracellular ATP levels are a pivotal determinant of chemoresistance in colon cancer cells. Cancer Res72, 304-314, doi:10.1158/0008-5472.CAN-11-1674 (2012).
69 Viale, A. et al. Oncogene ablation-resistant pancreatic cancer cells depend on mitochondrial function. Nature514, 628-632, doi:10.1038/nature13611 (2014).
70 Alistar, A. et al. Safety and tolerability of the first-in-class agent CPI-613 in combination with modified FOLFIRINOX in patients with metastatic pancreatic cancer: a single-centre, open-label, dose-escalation, phase 1 trial. The Lancet Oncology18, 770-778, doi:10.1016/s1470-2045(17)30314-5 (2017).
71 Vascotto, C. et al. Genome-wide analysis and proteomic studies reveal APE1/Ref-1 multifunctional role in mammalian cells. Proteomics9, 1058-1074, doi:10.1002/pmic.200800638 (2009).
72 Illuzzi, J. L. et al. Tumor-associated APE1 variant exhibits reduced complementation efficiency but does not promote cancer cell phenotypes. Environ Mol Mutagen, doi:10.1002/em.22074 (2017).
73 Amanakis, G. & Murphy, E. Cyclophilin D: An Integrator of Mitochondrial Function. Frontiers in physiology11, 595, doi:10.3389/fphys.2020.00595 (2020).
74 Chiu, H. Y., Tay, E. X. Y., Ong, D. S. T. & Taneja, R. Mitochondrial Dysfunction at the Center of Cancer Therapy. Antioxid Redox Signal32, 309-330, doi:10.1089/ars.2019.7898 (2020).
75 Martinez-Outschoorn, U. E. et al. Energy transfer in "parasitic" cancer metabolism: mitochondria are the powerhouse and Achilles' heel of tumor cells. Cell Cycle10, 4208-4216, doi:10.4161/cc.10.24.18487 (2011).
76 Martinez-Outschoorn, U. E., Lisanti, M. P. & Sotgia, F. Catabolic cancer-associated fibroblasts transfer energy and biomass to anabolic cancer cells, fueling tumor growth. Semin Cancer Biol25, 47-60, doi:10.1016/j.semcancer.2014.01.005 (2014).
77 Martinez-Outschoorn, U. E. et al. Autophagy in cancer associated fibroblasts promotes tumor cell survival: Role of hypoxia, HIF1 induction and NFkappaB activation in the tumor stromal microenvironment. Cell Cycle9, 3515-3533, doi:10.4161/cc.9.17.12928 (2010).
78 Fiaschi, T. et al. Reciprocal metabolic reprogramming through lactate shuttle coordinately influences tumor-stroma interplay. Cancer Res72, 5130-5140, doi:10.1158/0008-5472.CAN-12-1949 (2012).
79 Rhim, A. D. et al. Stromal elements act to restrain, rather than support, pancreatic ductal adenocarcinoma. Cancer Cell25, 735-747, doi:10.1016/j.ccr.2014.04.021 (2014).
80 Ozdemir, B. C. et al. Depletion of carcinoma-associated fibroblasts and fibrosis induces immunosuppression and accelerates pancreas cancer with reduced survival. Cancer Cell25, 719-734, doi:10.1016/j.ccr.2014.04.005 (2014).
81 Jiang, H. et al. Pancreatic ductal adenocarcinoma progression is restrained by stromal matrix. J Clin Invest, doi:10.1172/JCI136760 (2020).
82 Chun, K. S., Jang, J. H. & Kim, D. H. Perspectives Regarding the Intersections between STAT3 and Oxidative Metabolism in Cancer. Cells9, doi:10.3390/cells9102202 (2020).
83 Smolkova, K. et al. Nuclear Factor Erythroid 2-Related Factor 2 in Regulating Cancer Metabolism. Antioxid Redox Signal33, 966-997, doi:10.1089/ars.2020.8024 (2020).
84 Bazzani, V. et al. Mitochondrial apurinic/apyrimidinic endonuclease 1 enhances mtDNA repair contributing to cell proliferation and mitochondrial integrity in early stages of hepatocellular carcinoma. BMC Cancer20, 969, doi:10.1186/s12885-020-07258-6 (2020).
85 Barchiesi, A., Wasilewski, M., Chacinska, A., Tell, G. & Vascotto, C. Mitochondrial translocation of APE1 relies on the MIA pathway. Nucleic Acids Res43, 5451-5464, doi:10.1093/nar/gkv433 (2015).
86 Wang, X. et al. APE1/Ref-1 regulates 5-FU resistance in colon cancer cells through its redox and endonuclease activity. Int J Clin Exp Med12, 3870-3878 (2019).