1 Furukawa, Y. & Kikuchi, J. Epigenetic mechanisms of cell adhesion-mediated drug resistance in multiple myeloma. Int J Hematol 104, 281-292, doi:10.1007/s12185-016-2048-5 (2016).
2 Meads, M. B., Gatenby, R. A. & Dalton, W. S. Environment-mediated drug resistance: a major contributor to minimal residual disease. Nature reviews. Cancer 9, 665-674, doi:10.1038/nrc2714 (2009).
3 Mayo, A. & Reeder, C. Risk Stratification in Multiple Myeloma: Putting the Pieces Together. J Adv Pract Oncol 7, 318-321 (2016).
4 Rajkumar, S. V. Multiple myeloma: 2016 update on diagnosis, risk-stratification, and management. Am J Hematol 91, 719-734, doi:10.1002/ajh.24402 (2016).
5 Kumar, S. K. et al. Multiple myeloma. Nat Rev Dis Primers 3, 17046, doi:10.1038/nrdp.2017.46 (2017).
6 Bustoros, M. et al. Genomic Profiling of Smoldering Multiple Myeloma Identifies Patients at a High Risk of Disease Progression. Journal of Clinical Oncology 38, 2380-+, doi:10.1200/Jco.20.00437 (2020).
7 Agirre, X. et al. Whole-epigenome analysis in multiple myeloma reveals DNA hypermethylation of B cell-specific enhancers. Genome Research 25, 478-487, doi:10.1101/gr.180240.114 (2015).
8 Landau, H. J. et al. Accelerated single cell seeding in relapsed multiple myeloma. Nature Communications 11, doi:ARTN 3617
10.1038/s41467-020-17459-z (2020).
9 Maura, F. et al. Genomic landscape and chronological reconstruction of driver events in multiple myeloma. Nature Communications 10, doi:ARTN 3835
10.1038/s41467-019-11680-1 (2019).
10 Maura, F., Landgren, O. & Morgan, G. J. Designing Evolutionary Based Interception Strategies to Block the Transition from Precursor Phases to Multiple Myeloma. Clin Cancer Res, doi:10.1158/1078-0432.CCR-20-1395 (2020).
11 Dalton, W. S. The "total cancer care" concept: linking technology and health care. Cancer Control 12, 140-141, doi:10.1177/107327480501200211 (2005).
12 Liu, X. et al. Yamanaka factors critically regulate the developmental signaling network in mouse embryonic stem cells. Cell Res 18, 1177-1189, doi:10.1038/cr.2008.309 (2008).
13 Zhan, F. et al. Global gene expression profiling of multiple myeloma, monoclonal gammopathy of undetermined significance, and normal bone marrow plasma cells. Blood 99, 1745-1757, doi:10.1182/blood.v99.5.1745 (2002).
14 Nechanitzky, R. et al. Transcription factor EBF1 is essential for the maintenance of B cell identity and prevention of alternative fates in committed cells. Nat Immunol 14, 867-+, doi:10.1038/ni.2641 (2013).
15 Buffa, S. et al. A novel B cell population revealed by a CD38/CD24 gating strategy: CD38(-)CD24 (-) B cells in centenarian offspring and elderly people. Age (Dordr) 35, 2009-2024, doi:10.1007/s11357-012-9488-5 (2013).
16 Alaterre, E. et al. CD24, CD27, CD36 and CD302 gene expression for outcome prediction in patients with multiple myeloma. Oncotarget 8, 98931-98944, doi:10.18632/oncotarget.22131 (2017).
17 Wischhof, L. et al. The SWI/SNF subunit Bcl7a contributes to motor coordination and Purkinje cell function. Sci Rep 7, 17055, doi:10.1038/s41598-017-17284-3 (2017).
18 Venkatesh, S. & Workman, J. L. Histone exchange, chromatin structure and the regulation of transcription. Nat Rev Mol Cell Biol 16, 178-189, doi:10.1038/nrm3941 (2015).
19 Ma, C. & Staudt, L. M. LAF-4 encodes a lymphoid nuclear protein with transactivation potential that is homologous to AF-4, the gene fused to MLL in t(4;11) leukemias. Blood 87, 734-745, doi:DOI 10.1182/blood.V87.2.734.bloodjournal872734 (1996).
20 Lefevre, L. et al. Combined transcriptome studies identify AFF3 as a mediator of the oncogenic effects of beta-catenin in adrenocortical carcinoma. Oncogenesis 4, doi:10.1038/oncsis.2015.20 (2015).
21 Chen, D. B. et al. Regulatory factor X5 promotes hepatocellular carcinoma progression by transactivating tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein theta and suppressing apoptosis. Chinese Med J-Peking 132, 1572-1581, doi:10.1097/Cm9.0000000000000296 (2019).
22 de la Guardia, R. D. et al. Expression profile of telomere-associated genes in multiple myeloma. Journal of Cellular and Molecular Medicine 16, 3009-3021, doi:10.1111/j.1582-4934.2012.01628.x (2012).
23 Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 102, 15545-15550, doi:10.1073/pnas.0506580102 (2005).
24 Meads, M. B., Hazlehurst, L. A. & Dalton, W. S. The bone marrow microenvironment as a tumor sanctuary and contributor to drug resistance. Clinical Cancer Research 14, 2519-2526, doi:10.1158/1078-0432.Ccr-07-2223 (2008).
25 Jimenez-Sanchez, A. et al. Unraveling tumor-immune heterogeneity in advanced ovarian cancer uncovers immunogenic effect of chemotherapy. Nat Genet 52, 582-593, doi:10.1038/s41588-020-0630-5 (2020).
26 van der Maaten, L. & Hinton, G. Visualizing Data using t-SNE. J Mach Learn Res 9, 2579-2605 (2008).
27 Wang, P. H. Pattern-Recognition with Fuzzy Objective Function Algorithms - Bezdek,Jc. Siam Rev 25, 442-442 (1983).
28 Chen, E. Y. et al. Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinformatics 14, 128, doi:10.1186/1471-2105-14-128 (2013).
29 Neph, S. et al. An expansive human regulatory lexicon encoded in transcription factor footprints. Nature 489, 83-90, doi:10.1038/nature11212 (2012).
30 Margueron, R. & Reinberg, D. The Polycomb complex PRC2 and its mark in life. Nature 469, 343-349, doi:10.1038/nature09784 (2011).
31 Scharer, C. D., Barwick, B. G., Guo, M. Y., Bally, A. P. R. & Boss, J. M. Plasma cell differentiation is controlled by multiple cell division-coupled epigenetic programs. Nature Communications 9, doi:ARTN 1698
10.1038/s41467-018-04125-8 (2018).
32 Horikawa, I. & Barrett, J. C. Transcriptional regulation of the telomerase hTERT gene as a target for cellular and viral oncogenic mechanisms. Carcinogenesis 24, 1167-1176, doi:10.1093/carcin/bgg085 (2003).
33 Corces, M. R. et al. Lineage-specific and single-cell chromatin accessibility charts human hematopoiesis and leukemia evolution. Nature Genetics 48, 1193-1203, doi:10.1038/ng.3646 (2016).
34 Weintraub, A. S. et al. YY1 Is a Structural Regulator of Enhancer-Promoter Loops. Cell 171, 1573-+, doi:10.1016/j.cell.2017.11.008 (2017).
35 Bannister, A. J. & Kouzarides, T. Regulation of chromatin by histone modifications. Cell Res 21, 381-395, doi:10.1038/cr.2011.22 (2011).
36 Calo, E. & Wysocka, J. Modification of enhancer chromatin: what, how, and why? Mol Cell 49, 825-837, doi:10.1016/j.molcel.2013.01.038 (2013).
37 Jin, Y. et al. Active enhancer and chromatin accessibility landscapes chart the regulatory network of primary multiple myeloma. Blood 131, 2138-2150, doi:10.1182/blood-2017-09-808063 (2018).
38 Flavahan, W. A., Gaskell, E. & Bernstein, B. E. Epigenetic plasticity and the hallmarks of cancer. Science 357, doi:ARTN eaal2380
10.1126/science.aal2380 (2017).
39 Corces, M. R. et al. The chromatin accessibility landscape of primary human cancers. Science 362, doi:10.1126/science.aav1898 (2018).
40 LaFave, L. M. et al. Epigenomic State Transitions Characterize Tumor Progression in Mouse Lung Adenocarcinoma. Cancer Cell 38, 212-228 e213, doi:10.1016/j.ccell.2020.06.006 (2020).
41 Zhao, X. et al. Unification of de novo and acquired ibrutinib resistance in mantle cell lymphoma. Nat Commun 8, 14920, doi:10.1038/ncomms14920 (2017).
42 Zhao, X. et al. BCL2 Amplicon Loss and Transcriptional Remodeling Drives ABT-199 Resistance in B Cell Lymphoma Models. Cancer Cell 35, 752-766 e759, doi:10.1016/j.ccell.2019.04.005 (2019).
43 Bilodeau, S., Kagey, M. H., Frampton, G. M., Rahl, P. B. & Young, R. A. SetDB1 contributes to repression of genes encoding developmental regulators and maintenance of ES cell state. Genes Dev 23, 2484-2489, doi:10.1101/gad.1837309 (2009).
44 Yeap, L. S., Hayashi, K. & Surani, M. A. ERG-associated protein with SET domain (ESET)-Oct4 interaction regulates pluripotency and represses the trophectoderm lineage. Epigenetics Chromatin 2, 12, doi:10.1186/1756-8935-2-12 (2009).
45 Yuan, P. et al. Eset partners with Oct4 to restrict extraembryonic trophoblast lineage potential in embryonic stem cells. Genes Dev 23, 2507-2520, doi:10.1101/gad.1831909 (2009).
46 Margueron, R. et al. Role of the polycomb protein EED in the propagation of repressive histone marks. Nature 461, 762-767, doi:10.1038/nature08398 (2009).
47 Liu, Z., Scannell, D. R., Eisen, M. B. & Tjian, R. Control of embryonic stem cell lineage commitment by core promoter factor, TAF3. Cell 146, 720-731, doi:10.1016/j.cell.2011.08.005 (2011).
48 Pliner, H. A. et al. Cicero Predicts cis-Regulatory DNA Interactions from Single-Cell Chromatin Accessibility Data. Mol Cell 71, 858-871 e858, doi:10.1016/j.molcel.2018.06.044 (2018).
49 Whyte, W. A. et al. Master transcription factors and mediator establish super-enhancers at key cell identity genes. Cell 153, 307-319, doi:10.1016/j.cell.2013.03.035 (2013).
50 Saint-Andre, V. et al. Models of human core transcriptional regulatory circuitries. Genome Res 26, 385-396, doi:10.1101/gr.197590.115 (2016).
51 Sengupta, S. & George, R. E. Super-Enhancer-Driven Transcriptional Dependencies in Cancer. Trends Cancer 3, 269-281, doi:10.1016/j.trecan.2017.03.006 (2017).
52 Mayran, A. & Drouin, J. Pioneer transcription factors shape the epigenetic landscape. Journal of Biological Chemistry 293, 13795-13804, doi:10.1074/jbc.R117.001232 (2018).
53 Boller, S. et al. Pioneering Activity of the C-Terminal Domain of EBF1 Shapes the Chromatin Landscape for B Cell Programming. Immunity 44, 527-541, doi:10.1016/j.immuni.2016.02.021 (2016).
54 Treiber, T. et al. Early B cell factor 1 regulates B cell gene networks by activation, repression, and transcription- independent poising of chromatin. Immunity 32, 714-725, doi:10.1016/j.immuni.2010.04.013 (2010).
55 Dyson, N. J. RB1: a prototype tumor suppressor and an enigma. Gene Dev 30, 1492-1502, doi:10.1101/gad.282145.116 (2016).
56 Reeves, H. L. et al. Kruppel-Like factor 6 (KLF6) is a tumor-suppressor gene frequently inactivated in colorectal cancer. Gastroenterology 126, 1090-1103, doi:10.1053/j.gastro.2004.01.005 (2004).
57 Tian, E. et al. Allelic mutations in noncoding genomic sequences construct novel transcription factor binding sites that promote gene overexpression. Gene Chromosome Canc 54, 692-701, doi:10.1002/gcc.22280 (2015).
58 Chapuy, B. et al. Discovery and Characterization of Super-Enhancer-Associated Dependencies in Diffuse Large B Cell Lymphoma (vol 24, pg 777, 2013). Cancer Cell 25, 545-546, doi:10.1016/j.ccr.2014.03.029 (2014).
59 Meyers, R. M. et al. Computational correction of copy number effect improves specificity of CRISPR-Cas9 essentiality screens in cancer cells. Nature Genetics 49, 1779-+, doi:10.1038/ng.3984 (2017).
60 Sarin, V. et al. Evaluating the efficacy of multiple myeloma cell lines as models for patient tumors via transcriptomic correlation analysis. Leukemia 34, 2754-2765, doi:10.1038/s41375-020-0785-1 (2020).
61 Kuehl, W. M. & Bergsagel, P. L. Molecular pathogenesis of multiple myeloma and its premalignant precursor. J Clin Invest 122, 3456-3463, doi:10.1172/JCI61188 (2012).
62 Kalff, A. & Spencer, A. The t(4;14) translocation and FGFR3 overexpression in multiple myeloma: prognostic implications and current clinical strategies. Blood Cancer Journal 2, doi:ARTN e89
10.1038/bcj.2012.37 (2012).
63 Dutta, A. K. et al. Subclonal evolution in disease progression from MGUS/SMM to multiple myeloma is characterised by clonal stability. Leukemia 33, 457-468, doi:10.1038/s41375-018-0206-x (2019).
64 Hanamura, I. et al. Frequent gain of chromosome band 1q21 in plasma-cell dyscrasias detected by fluorescence in situ hybridization: incidence increases from MGUS to relapsed myeloma and is related to prognosis and disease progression following tandem stem-cell transplantation. Blood 108, 1724-1732, doi:10.1182/blood-2006-03-009910 (2006).
65 Saxe, D., Seo, E. J., Bergeron, M. B. & Han, J. Y. Recent advances in cytogenetic characterization of multiple myeloma. Int J Lab Hematol 41, 5-14, doi:10.1111/ijlh.12882 (2019).
66 Gatenby, R. A., Cunningham, J. J. & Brown, J. S. Evolutionary triage governs fitness in driver and passenger mutations and suggests targeting never mutations. Nature Communications 5, doi:ARTN 5499
10.1038/ncomms6499 (2014).
67 Zsnagy, I., Cutler, R. G. & Semsei, I. Dysdifferentiation Hypothesis of Aging and Cancer - a Comparison with the Membrane Hypothesis of Aging. Ann Ny Acad Sci 521, 215-225, doi:DOI 10.1111/j.1749-6632.1988.tb35280.x (1988).
68 Sapoznikov, A. et al. Perivascular clusters of dendritic cells provide critical survival signals to B cells in bone marrow niches. Nat Immunol 9, 388-395, doi:10.1038/ni1571 (2008).
69 Silva, A. S. & Gatenby, R. A. Adaptation to survival in germinal center is the initial step in onset of indolent stage of multiple myeloma. Molecular pharmaceutics 8, 2012-2020, doi:10.1021/mp200279p (2011).
70 Kalluri, R. & Weinberg, R. A. The basics of epithelial-mesenchymal transition. J Clin Invest 119, 1420-1428, doi:10.1172/JCI39104 (2009).
71 Zhu, J. et al. Gain-of-function p53 mutants co-opt chromatin pathways to drive cancer growth. Nature 525, 206-211, doi:10.1038/nature15251 (2015).
72 Hosogane, M., Funayama, R., Nishida, Y., Nagashima, T. & Nakayama, K. Ras-Induced Changes in H3K27me3 Occur after Those in Transcriptional Activity. Plos Genetics 9, doi:ARTN e1003698
10.1371/journal.pgen.1003698 (2013).
73 Medvedev, S. P., Shevchenko, A. I. & Zakian, S. M. Molecular basis of Mammalian embryonic stem cell pluripotency and self-renewal. Acta Naturae 2, 30-46 (2010).
74 James, D., Levine, A. J., Besser, D. & Hemmati-Brivanlou, A. TGFbeta/activin/nodal signaling is necessary for the maintenance of pluripotency in human embryonic stem cells. Development 132, 1273-1282, doi:10.1242/dev.01706 (2005).
75 Li, J., Li, J. & Chen, B. Oct4 was a novel target of Wnt signaling pathway. Mol Cell Biochem 362, 233-240, doi:10.1007/s11010-011-1148-z (2012).
76 van Andel, H., Kocemba, K. A., Spaargaren, M. & Pals, S. T. Aberrant Wnt signaling in multiple myeloma: molecular mechanisms and targeting options. Leukemia 33, 1063-1075, doi:10.1038/s41375-019-0404-1 (2019).
77 Prickaerts, P. et al. Hypoxia increases genome-wide bivalent epigenetic marking by specific gain of H3K27me3. Epigenetics Chromatin 9, 46, doi:10.1186/s13072-016-0086-0 (2016).
78 Villard, J. et al. A functionally essential domain of RFX5 mediates activation of major histocompatibility complex class II promoters by promoting cooperative binding between RFX and NF-Y. Molecular and Cellular Biology 20, 3364-3376, doi:Doi 10.1128/Mcb.20.10.3364-3376.2000 (2000).
79 Wright, K. L. & Ting, J. P. Epigenetic regulation of MHC-II and CIITA genes. Trends Immunol 27, 405-412, doi:10.1016/j.it.2006.07.007 (2006).