Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A., Struhl, K., 2001. Current protocols in molecular biology. New York, NY: John Wiley & Sons.
Adams DJ., 2004. Fungal cell wall chitinases and glucanases. MICROBIOL-SGM. 150 (7):2029-35.
Berendsen RL, Pieterse CMJ, Bakker PAHM. The rhizosphere microbiome and plant health., 2012. TRENDS PLANT SCI. 17(8):478-86.
Cabib E, Roh DH, Schmidt M, Crotti LB, Varma A., 2001. The yeast cell wall and septum as paradigms of cell growth and morphogenesis. J BIOL CHEM. 276(23):19679-82.
Cordero P, Principe A, Jofre E, Mori G, Fischer S., 2014. Inhibition of the phytopathogenic fungus Fusarium proliferatum by volatile compounds produced by Pseudomonas. ARCH MICROBIOL.196(11):803-9.
Chen Y, Wang J, Yang N., 2018. Wheat microbiome bacteria can reduce virulence of a plant pathogenic fungus by altering histone acetylation. NAT COMMUN. 9(3429).
Davies JE, Peterson JC., 1997. Surveillance of occupational, accidental, and incidental exposure to organophosphate pesticides using urine alkyl phosphate and phenolic metabolite measurements. ANN NY ACAD SCI. 837:257-68.
Fletcher J, Bender C, Budowle B., 2006. Plant pathogen forensics: Capabilities, needs, and recommendations. MICROBIOL MOL BIOL R. 70(2):450.
Fang R, Lin J, Yao S., 2013. Promotion of plant growth, biological control and induced systemic resistance in maize by Pseudomonas aurantiaca JD37. ANN MICROBIOL.63(3):1177-85.
Frikha-Gargouri O, Ben Abdallah D, Ghorbel I, Charfeddine I, Jlaiel L, Triki MA, 2017. Tounsi S Lipopeptides from a novel Bacillus methylotrophicus 39b strain suppress Agrobacterium crown gall tumours on tomato plants. Pest Manag Sci . 73: 568–574
Filion M, Roquigny R, Novinscak A, Joly DL., 2018. Transcriptome alteration in Phytophthora infestans in response to phenazine-1-carboxylic acid production by Pseudomonas fluorescens LBUM223. PHYTOPATHOLOGY.108S(10):5-6.
Fan B, Wang C, Song XF, Ding XL, Wu LM, Wu HJ, Gao XW, Borriss R., 2018. Bacillus velezensis FZB42 in 2018: The gram-positive model strain for plant growth promotion and biocontrol. Front Microbiol 9 (2491)
Guevara-Avendano E, Adriana Bejarano-Bolivar A, Kiel-Martinez A., 2019. Avocado rhizobacteria emit volatile organic compounds with antifungal activity against Fusarium solani, Fusarium sp. associated with Kuroshio shot hole borer, and Colletotrichum gloeosporioides. MICROBIOL RES. 219:74-83.
Gao Z, Zhang B, Liu H, Han J, Zhang Y., 2017. Identification of endophytic Bacillus velezensis ZSY-1 strain and antifungal activity of its volatile compounds against Alternaria solani and Botrytis cinerea. BIOL CONTROL.105:27-39.
Gong A, Dong F, Hu M., 2019. Antifungal activity of volatile emitted from Enterobacter asburiae Vt-7 against Aspergillus flavus and aflatoxins in peanuts during storage. FOOD CONTROL. 106(UNSP 106718).
Holt, J. G., Krieg, N. R., Sneath, P. H. A., Staley, J. T., Williams, S. T., 1994. Bergey’s manual of determinative bacteriology (9th ed.). Baltimore, MD: Lippincott Williams & Wilkins.
Hu W, Gao Q, Hamada MS., 2014. Potential of Pseudomonas chlororaphis subsp aurantiaca Strain Pcho10 as a biocontrol agent against Fusarium graminearum. PHYTOPATHOLOGY. 104(12):1289-97.
Hunziker L, Boenisch D, Groenhagen U, Bailly A, Schulz S, Weisskopf L., 2015. Pseudomonas Strains naturally associated with potato plants produce volatiles with high potential for inhibition of Phytophthora infestans. APPL ENVIRON MICROB. 81(3):821-30.
Han J, Shim H, Shin J, Kim KS.,2015. Antagonistic activities of Bacillus spp. strains isolated from Tidal Flat Sediment towards anthracnose pathogens Colletotrichum acutatum and C. gloeosporioides in South Korea. PLANT PATHOLOGY J. 31(2):165-75.
Huang L, Li Q, Hou Y., 2017. Bacillus velezensis strain HYEB5-6 as a potential biocontrol agent against anthracnose on Euonymus japonicus. BIOCONTROL SCI TECHN. 27(5):636-53.
Jeon J, Goh J, Yoo S., 2008. A putative MAP kinase, MCK1, is required for cell wall integrity and pathogenicity of the rice blast fungus, Magnaporthe oryzae. MOL PLANT MICROBE IN. 21(5):525-34.
Jiao Z, Wu N, Hale L, Wu W, Wu D, Guo Y., 2013. Characterisation of Pseudomonas chlororaphis subsp aurantiaca strain Pa40 with the ability to control wheat sharp eyespot disease. ANN APPL BIOL. 163(3):444-53.
Kong, W., X. Wu and Y. Zhao., 2019. Effects of Rahnella aquatilis JZ-GX1 on treat chlorosis induced by iron deficiency in Cinnamomum camphora. JOURNAL OF PLANT GROWTH REGULATION. https://doi.org/10.1007/s00344-019-10029-8
Lenardon MD, Munro CA, Gow NAR. Chitin synthesis and fungal pathogenesis., 2010. CURR OPIN MICROBIOL. 13(4):416-23.
Lin Y, Liu Q, Cheng L, Lei Y, Zhang A., 2014. Synthesis and antimicrobial activities of polysiloxane-containing quaternary ammonium salts on bacteria and phytopathogenic fungi. REACT FUNCT POLYM. 85(SI):36-44.
Lim SM, Yoon M, Choi GJ., 2017. Diffusible and volatile antifungal compounds produced by an antagonistic Bacillus velezensis G341 against various phytopathogenic fungi. PLANT PATHOLOGY J. 33(5):488-98.
Li Y, Wu CF, Xing Z, Gao BL, Zhang LQ (2017) Engineering the bacterial endophyte Burkholderia pyrrocinia JK-SH007 for the control of lepidoptera larvae by introducing the cry218 genes of Bacillus thuringiensis. Biotechnol Biotec EQ. 31:1167-1172
Maindad DV, Kasture VM, Chaudhari H, Dhavale DD, Chopade BA, Sachdev DP., 2014. Characterization and fungal inhibition activity of siderophore from wheat rhizosphere associated Acinetobacter calcoaceticus strain HIRFA32. INDIAN J MICROBIOL. 54(3):315-22.
Ongena M, Jacques P. Bacillus lipopeptides: versatile weapons for plant disease biocontrol.,2008. TRENDS MICROBIOL. 16(3):115-25.
Pareek SS, Ravi I, Sharma V., 2014. Induction of beta-1,3-glucanase and chitinase in Vigna aconitifolia inoculated with Macrophomina phaseolina. J PLANT INTERACT. 9(1):434-9.
Pieterse CMJ, de Jonge R, Berendsen RL., 2016. The Soil-Borne Supremacy. TRENDS PLANT SCI. 21(3):171-3.
Raaijmakers JM, Weller DM, Thomashow LS. Frequency of antibiotic-producing Pseudomonas spp. in natural environments. APPL ENVIRON MICROB. 1997;63(3):881-7.
Park JY, Oh SA, Anderson AJ, Neiswender J, Kim JC, Kim YC., 2011. Production of the antifungal compounds phenazine and pyrrolnitrin from Pseudomonas chlororaphis O6 is differentially regulated by glucose. LETT APPL MICROBIOL. 52(5):532-7.
Raio A, Puopolo G, Cimmino A, Danti R, Della Rocca G, Evidente A., 2011. Biocontrol of cypress canker by the phenazine producer Pseudomonas chlororaphis subsp aureofaciens strain M71. BIOL CONTROL. 58(2):133-8.
Rovera M, Pastor N, Niederhauser M, Rosas SB., 2014. Evaluation of Pseudomonas chlororaphis subsp aurantiaca SR1 for growth promotion of soybean and for control of Macrophomina phaseolina. BIOCONTROL SCI TECHN. 24(9):1012-25.
Rajer F. U, Wu H, Xie Y, Xie S, Raza W, Tahir H A S, Gao X., 2017. Volatile organic compounds produced by a soil-isolate, Bacillus subtilis FA26 induce adverse ultra-structural changes to the cells of Clavibacter michiganensis ssp. sepedonicus the causal agent of bacterial ring rot of potato. Microbiology, 163: 523−530.
Roquigny R, Novinscak A, Arseneault T, Joly DL, Filion M., 2018. Transcriptome alteration in Phytophthora infestans in response to phenazine-1-carboxylic acid production by Pseudomonas fluorescens strain LBUM223. BMC GENOMICS. 19(474).
Svercel M, Duffy B, Defago G., 2007. PCR amplification of hydrogen cyanide biosynthetic locus hcnAB in Pseudomonas spp. J MICROBIOL METH. 70(1):209-13.
Sharma PK, Munir RI, Plouffe J, Shah N, de Kievit T, Levin DB., 2018. Polyhydroxyalkanoate (PHA) polymer accumulation and pha gene expression in phenazine (phz(-)) and pyrrolnitrin (prn(-)) defective mutants of Pseudomonas chlororaphis PA23. POLYMERS-BASEL. 10(120311).
Sahni S, Sarma BK, Singh KP., 2008. Management of Sclerotium rolfsii with integration of non-conventional chemicals, vermicompost and Pseudomonas syringae. WORLD J MICROB BIOT. 24(4):517-22.
Schwyn B, Neilands JB., 1987. Universal chemical assay for the detection and determination of siderophores. ANAL BIOCHEM. 160(1):47-56.
Suryadi, Y., Susilowati, D., Lestari, P., Priyatno, T., Samudra, I., Hikmawati, N., Mubarik, N., 2014. Characterization of bacterial isolates producing chitinase and glucanase for biocontrol of plant fungal pathogens. Journal of Agricultural Technology. 10, 983–999.
Tamura K, Stecher G, Peterson D, Filipski A, Kumar S., 2013. MEGA6: Molecular evolutionary genetics analysis version 6.0. MOL BIOL EVOL. 30(12):2725-9.
Tagele SB, Lee HG, Kim SW, Lee YS., 2019. Phenazine and 1-Undecene producing Pseudomonas chlororaphis subsp. aurantiaca Strain KNU17Pc1 for growth promotion and disease suppression in Korean maize cultivars. J MICROBIOL BIOTECHN. 29(1):66-78.
Velivelli SLS, Kromann P, Lojan P., 2015. Identification of mVOCs from andean rhizobacteria and field evaluation of bacterial and mycorrhizal inoculants on growth of potato in its center of origin. MICROB ECOL. 69(3):652-67.
Valentina Lazazzara, Michele Perazzolli, Ilaria Pertot, Franco Biasioli, Gerardo Puopolo, Luca Cappellin., 2017. Growth media affect the volatilome and antimicrobial activity against Phytophthora infestans in four Lysobacter type strains. Microbiological Research. 201:(52-62).
Wang X, Li Q, Sui J., 2019. Isolation and characterization of antagonistic bacteria Paenibacillus jamilae HS-26 and their effects on plant growth. BIOMED RES INT. 3638926.
Wang, S.-L, Yieh, T.-C, Shih, I.-L, 1999. Production of antifungal compounds by Pseudomonas aeruginosa K-187 using shrimp and crab shell powder as a carbon source. Enzyme and Microbial Technology. 25, 142–148. doi:10.1016/S0141-0229(99)00024-1
Webster, J, Weber, R, 2007. Introduction to fungi (3rd ed.). New York, NY: Cambridge University Press.
Yang Y, Zhang S, Li K., 2019. Antagonistic activity and mechanism of an isolated Streptomyces corchorusii stain AUH-1 against phytopathogenic fungi. WORLD J MICROB BIOT. 35(1459).
Zhang Y, Li T, Liu Y., 2019. Volatile organic compounds produced by Pseudomonas chlororaphis subsp. aureofaciens SPS-41 as biological fumigants to control Ceratocystis fimbriata in postharvest sweet potatoes. J AGR FOOD CHEM. 67(13):3702-10.
Zhang H, Liu K, Zhang X., 2010. A two-component histidine kinase, MoSLN1, is required for cell wall integrity and pathogenicity of the rice blast fungus, Magnaporthe oryzae. CURR GENET. 56(6):517-28.