1 Kelly, B. C., Ikonomou, M. G., Blair, J. D., Morin, A. E. & F. A. P. C. Gobas. Food web-specific biomagnification of persistent organic pollutants. Science 317, 236-239 (2007).
2 Schwarzenbach, R. P. et al. The challenge of micropollutants in aquatic systems. Science 313, 1072-1077, doi:10.1126/science.1127291 (2006).
3 Jones, K. C. & Voogt, P. De. Persistent organic pollutants (POPs): state of the science. Environ. Pollut. 100, 209-221 (1999).
4 Pi, Y. et al. Adsorptive and photocatalytic removal of Persistent Organic Pollutants (POPs) in water by metal-organic frameworks (MOFs). Chem. Eng. J 337, 351-371, doi:10.1016/j.cej.2017.12.092 (2018).
5 Xu, H., Bjerneld, E. J., Käll, M. & Börjesson, L. Spectroscopy of Single Hemoglobin Molecules by Surface Enhanced Raman Scattering. Phys. Rev. Lett. 83, 4357-4360, doi:10.1103/PhysRevLett.83.4357 (1999).
6 Xu, H., Aizpurua, J., Kall, M. & Apell, P. Electromagnetic contributions to single-molecule sensitivity in surface-enhanced raman scattering. Phys. Rev. E 62, 4318-4324, doi:10.1103/physreve.62.4318 (2000).
7 Pieczonka, N. P. & Aroca, R. F. Single molecule analysis by surfaced-enhanced Raman scattering. Chem. Soc. Rev. 37, 946-954, doi:10.1039/b709739p (2008).
8 Li, J. F. et al. Shell-isolated nanoparticle-enhanced Raman spectroscopy. Nature 464, 392-395, doi:10.1038/nature08907 (2010).
9 Panneerselvam, R. et al. Surface-enhanced Raman spectroscopy: bottlenecks and future directions. Chem. Commun. 54, 10-25, doi:10.1039/c7cc05979e (2017).
10 Otto, A., Mrozek, I., Grabhorn, H. & Akemann, W. J. J. o. P. C. M. Surface-enhanced Raman scattering. J. Phys-Condens. Matter. 4, 1143-1212 (1992).
11 Schatz & George, C. Theoretical studies of surface enhanced Raman scattering. Acc. Chem. Res 17, 370-376 (1984).
12 Schlucker, S. Surface-enhanced Raman spectroscopy: concepts and chemical applications. Angew Chem Int Ed Engl 53, 4756-4795, doi:10.1002/anie.201205748 (2014).
13 Moskovits, M. Surface-enhanced Raman spectroscopy: a brief retrospective. J. Raman Spectrosc. 36, 485-496 (2005).
14 Zeman, E. J. & Schatz, G. C. An accurate electromagnetic theory study of surface enhancement factors for silver, gold, copper, lithium, sodium, aluminum, gallium, indium, zinc, and cadmium. J. Phys. Chem. 91, 634-643 (1987).
15 Zhang, D. et al. Buoyant particulate strategy for few-to-single particle-based plasmonic enhanced nanosensors. Nat. Commun. 11, 2603, doi:10.1038/s41467-020-16329-y (2020).
16 Hao, R., You, H., Zhu, J., Chen, T. & Fang, J. "Burning Lamp"-like Robust Molecular Enrichment for Ultrasensitive Plasmonic Nanosensors. ACS Sens. 5, 781-788, doi:10.1021/acssensors.9b02423 (2020).
17 De Angelis, F. et al. Breaking the diffusion limit with super-hydrophobic delivery of molecules to plasmonic nanofocusing SERS structures. Nat. Photonics 5, 682-687, doi:10.1038/nphoton.2011.222 (2011).
18 Alsbaiee, A. et al. Rapid removal of organic micropollutants from water by a porous beta-cyclodextrin polymer. Nature 529, 190-194, doi:10.1038/nature16185 (2016).
19 Xiao, L. et al. Beta-Cyclodextrin Polymer Network Sequesters Perfluorooctanoic Acid at Environmentally Relevant Concentrations. J. Am. Chem. Soc. 139, 7689-7692, doi:10.1021/jacs.7b02381 (2017).
20 Liu, X. et al. A magnetic graphene hybrid functionalized with beta-cyclodextrins for fast and efficient removal of organic dyes. J. Mater. Chem. A 2, doi:10.1039/c4ta00753k (2014).
21 Huang, D. et al. Fabrication of water-compatible molecularly imprinted polymer based on β-cyclodextrin modified magnetic chitosan and its application for selective removal of bisphenol A from aqueous solution. J. Taiwan Inst. Chem. E 77, 113-121, doi:10.1016/j.jtice.2017.04.030 (2017).
22 Liu, J. et al. Highly water-dispersible biocompatible magnetite particles with low cytotoxicity stabilized by citrate groups. Angew. Chem. Int. Ed. 48, 5875-5879, doi:10.1002/anie.200901566 (2009).
23 Jiang, H.-L. et al. A novel crosslinked β-cyclodextrin-based polymer for removing methylene blue from water with high efficiency. Colloid. Surfaces. A 560, 59-68, doi:10.1016/j.colsurfa.2018.10.004 (2019).
24 Huang, D., Zhang, Y. & Zhang, H. A novel synthesis of ethyl carbonate derivatives of beta-cyclodextrin. Carbohyd. Res. 370, 82-85, doi:10.1016/j.carres.2013.01.022 (2013).
25 Huang, Q., Chai, K., Zhou, L. & Ji, H. A phenyl-rich β-cyclodextrin porous crosslinked polymer for efficient removal of aromatic pollutants: Insight into adsorption performance and mechanism. Chem. Eng. J 387, doi:10.1016/j.cej.2020.124020 (2020).
26 Wang, Z., Zhang, P., Hu, F., Zhao, Y. & Zhu, L. A crosslinked beta-cyclodextrin polymer used for rapid removal of a broad-spectrum of organic micropollutants from water. Carbohyd. Polym. 177, 224-231, doi:10.1016/j.carbpol.2017.08.059 (2017).
27 Rusiecki, J. A. et al. Global DNA hypomethylation is associated with high serum-persistent organic pollutants in Greenlandic Inuit. Environ. Health. Persp. 116, 1547-1552, doi:10.1289/ehp.11338 (2008).
28 Chen, X. et al. Detection and quantification of carbendazim in Oolong tea by surface-enhanced Raman spectroscopy and gold nanoparticle substrates. Food Chem 293, 271-277, doi:10.1016/j.foodchem.2019.04.085 (2019).
29 Zhu, X. et al. A novel graphene-like titanium carbide MXene/Au–Ag nanoshuttles bifunctional nanosensor for electrochemical and SERS intelligent analysis of ultra-trace carbendazim coupled with machine learning. Ceram. Int. doi:10.1016/j.ceramint.2020.08.121 (2020).
30 Zhai, Y. et al. Metal-organic-frameworks-enforced surface enhanced Raman scattering chip for elevating detection sensitivity of carbendazim in seawater. Sensors Actuat. B-Chem. 326, doi:10.1016/j.snb.2020.128852 (2021).