1 Mehlen, P. & Puisieux, A. Metastasis: a question of life or death. Nature reviews. Cancer 6, 449-458, doi:10.1038/nrc1886 (2006).
2 Braun, S. et al. A pooled analysis of bone marrow micrometastasis in breast cancer. The New England journal of medicine 353, 793-802, doi:10.1056/NEJMoa050434 (2005).
3 Koch, M. et al. Detection of hematogenous tumor cell dissemination predicts tumor relapse in patients undergoing surgical resection of colorectal liver metastases. Annals of surgery 241, 199-205, doi:10.1097/01.sla.0000151795.15068.27 (2005).
4 Funaki, S. et al. Novel approach for detection of isolated tumor cells in pulmonary vein using negative selection method: morphological classification and clinical implications. European journal of cardio-thoracic surgery : official journal of the European Association for Cardio-thoracic Surgery 40, 322-327, doi:10.1016/j.ejcts.2010.11.029 (2011).
5 Giavazzi, R., Foppolo, M., Dossi, R. & Remuzzi, A. Rolling and adhesion of human tumor cells on vascular endothelium under physiological flow conditions. The Journal of clinical investigation 92, 3038-3044, doi:10.1172/JCI116928 (1993).
6 McDonald, B. et al. Systemic inflammation increases cancer cell adhesion to hepatic sinusoids by neutrophil mediated mechanisms. International journal of cancer 125, 1298-1305, doi:10.1002/ijc.24409 (2009).
7 Kienast, Y. et al. Real-time imaging reveals the single steps of brain metastasis formation. Nature medicine 16, 116-122, doi:10.1038/nm.2072 (2010).
8 Stoletov, K. et al. Visualizing extravasation dynamics of metastatic tumor cells. Journal of cell science 123, 2332-2341, doi:10.1242/jcs.069443 (2010).
9 Reymond, N., d'Agua, B. B. & Ridley, A. J. Crossing the endothelial barrier during metastasis. Nature reviews. Cancer 13, 858-870, doi:10.1038/nrc3628 (2013).
10 Lafrenie, R. M., Buchanan, M. R. & Orr, F. W. Adhesion molecules and their role in cancer metastasis. Cell biophysics 23, 3-89, doi:10.1007/BF02796507 (1993).
11 Miles, F. L., Pruitt, F. L., van Golen, K. L. & Cooper, C. R. Stepping out of the flow: capillary extravasation in cancer metastasis. Clinical & experimental metastasis 25, 305-324, doi:10.1007/s10585-007-9098-2 (2008).
12 Strell, C. & Entschladen, F. Extravasation of leukocytes in comparison to tumor cells. Cell communication and signaling : CCS 6, 10, doi:10.1186/1478-811X-6-10 (2008).
13 Shirure, V. S., Reynolds, N. M. & Burdick, M. M. Mac-2 binding protein is a novel E-selectin ligand expressed by breast cancer cells. PloS one 7, e44529, doi:10.1371/journal.pone.0044529 (2012).
14 Laubli, H. & Borsig, L. Selectins promote tumor metastasis. Seminars in cancer biology 20, 169-177, doi:10.1016/j.semcancer.2010.04.005 (2010).
15 St Hill, C. A. Interactions between endothelial selectins and cancer cells regulate metastasis. Frontiers in bioscience 16, 3233-3251, doi:10.2741/3909 (2011).
16 Barthel, S. R. et al. Definition of molecular determinants of prostate cancer cell bone extravasation. Cancer research 73, 942-952, doi:10.1158/0008-5472.CAN-12-3264 (2013).
17 Esposito, M. et al. Bone vascular niche E-selectin induces mesenchymal-epithelial transition and Wnt activation in cancer cells to promote bone metastasis. Nature cell biology 21, 627-639, doi:10.1038/s41556-019-0309-2 (2019).
18 Nojiri, T. et al. Atrial natriuretic peptide prevents cancer metastasis through vascular endothelial cells. Proceedings of the National Academy of Sciences of the United States of America 112, 4086-4091, doi:10.1073/pnas.1417273112 (2015).
19 Miller, J. et al. Intercellular adhesion molecule-1 dimerization and its consequences for adhesion mediated by lymphocyte function associated-1. The Journal of experimental medicine 182, 1231-1241, doi:10.1084/jem.182.5.1231 (1995).
20 Yang, Y. et al. Structural basis for dimerization of ICAM-1 on the cell surface. Molecular cell 14, 269-276, doi:10.1016/s1097-2765(04)00204-7 (2004).
21 Gendler, S. J. MUC1, the renaissance molecule. Journal of mammary gland biology and neoplasia 6, 339-353, doi:10.1023/a:1011379725811 (2001).
22 Regimbald, L. H. et al. The breast mucin MUCI as a novel adhesion ligand for endothelial intercellular adhesion molecule 1 in breast cancer. Cancer research 56, 4244-4249 (1996).
23 Hayashi, T. et al. MUC1 mucin core protein binds to the domain 1 of ICAM-1. Digestion 63 Suppl 1, 87-92, doi:10.1159/000051917 (2001).
24 Rahn, J. J. et al. MUC1 mediates transendothelial migration in vitro by ligating endothelial cell ICAM-1. Clinical & experimental metastasis 22, 475-483, doi:10.1007/s10585-005-3098-x (2005).
25 Wittchen, E. S. Endothelial signaling in paracellular and transcellular leukocyte transmigration. Frontiers in bioscience 14, 2522-2545, doi:10.2741/3395 (2009).
26 Ley, K., Laudanna, C., Cybulsky, M. I. & Nourshargh, S. Getting to the site of inflammation: the leukocyte adhesion cascade updated. Nature reviews. Immunology 7, 678-689, doi:10.1038/nri2156 (2007).
27 Freedman, A. S. et al. Adhesion of human B cells to germinal centers in vitro involves VLA-4 and INCAM-110. Science 249, 1030-1033, doi:10.1126/science.1697696 (1990).
28 Taichman, D. B. et al. Tumor cell surface alpha 4 beta 1 integrin mediates adhesion to vascular endothelium: demonstration of an interaction with the N-terminal domains of INCAM-110/VCAM-1. Cell regulation 2, 347-355, doi:10.1091/mbc.2.5.347 (1991).
29 Juneja, H. S., Schmalsteig, F. C., Lee, S. & Chen, J. Vascular cell adhesion molecule-1 and VLA-4 are obligatory adhesion proteins in the heterotypic adherence between human leukemia/lymphoma cells and marrow stromal cells. Experimental hematology 21, 444-450 (1993).
30 Lu, X. et al. VCAM-1 promotes osteolytic expansion of indolent bone micrometastasis of breast cancer by engaging alpha4beta1-positive osteoclast progenitors. Cancer cell 20, 701-714, doi:10.1016/j.ccr.2011.11.002 (2011).
31 Rice, G. E. & Bevilacqua, M. P. An inducible endothelial cell surface glycoprotein mediates melanoma adhesion. Science 246, 1303-1306, doi:10.1126/science.2588007 (1989).
32 Garofalo, A. et al. Involvement of the very late antigen 4 integrin on melanoma in interleukin 1-augmented experimental metastases. Cancer research 55, 414-419 (1995).
33 Okahara, H., Yagita, H., Miyake, K. & Okumura, K. Involvement of very late activation antigen 4 (VLA-4) and vascular cell adhesion molecule 1 (VCAM-1) in tumor necrosis factor alpha enhancement of experimental metastasis. Cancer research 54, 3233-3236 (1994).
34 Cardones, A. R., Murakami, T. & Hwang, S. T. CXCR4 enhances adhesion of B16 tumor cells to endothelial cells in vitro and in vivo via beta(1) integrin. Cancer research 63, 6751-6757 (2003).
35 Higashiyama, A., Watanabe, H., Okumura, K. & Yagita, H. Involvement of tumor necrosis factor alpha and very late activation antigen 4/vascular cell adhesion molecule 1 interaction in surgical-stress-enhanced experimental metastasis. Cancer immunology, immunotherapy : CII 42, 231-236, doi:10.1007/s002620050275 (1996).
36 Kaszubska, W. et al. Cyclic AMP-independent ATF family members interact with NF-kappa B and function in the activation of the E-selectin promoter in response to cytokines. Molecular and cellular biology 13, 7180-7190, doi:10.1128/mcb.13.11.7180 (1993).
37 Lewis, H., Kaszubska, W., DeLamarter, J. F. & Whelan, J. Cooperativity between two NF-kappa B complexes, mediated by high-mobility-group protein I(Y), is essential for cytokine-induced expression of the E-selectin promoter. Molecular and cellular biology 14, 5701-5709, doi:10.1128/mcb.14.9.5701 (1994).
38 Hou, J., Baichwal, V. & Cao, Z. Regulatory elements and transcription factors controlling basal and cytokine-induced expression of the gene encoding intercellular adhesion molecule 1. Proceedings of the National Academy of Sciences of the United States of America 91, 11641-11645, doi:10.1073/pnas.91.24.11641 (1994).
39 Roebuck, K. A., Rahman, A., Lakshminarayanan, V., Janakidevi, K. & Malik, A. B. H2O2 and tumor necrosis factor-alpha activate intercellular adhesion molecule 1 (ICAM-1) gene transcription through distinct cis-regulatory elements within the ICAM-1 promoter. The Journal of biological chemistry 270, 18966-18974, doi:10.1074/jbc.270.32.18966 (1995).
40 Neish, A. S., Williams, A. J., Palmer, H. J., Whitley, M. Z. & Collins, T. Functional analysis of the human vascular cell adhesion molecule 1 promoter. The Journal of experimental medicine 176, 1583-1593, doi:10.1084/jem.176.6.1583 (1992).
41 Iademarco, M. F., McQuillan, J. J., Rosen, G. D. & Dean, D. C. Characterization of the promoter for vascular cell adhesion molecule-1 (VCAM-1). The Journal of biological chemistry 267, 16323-16329 (1992).
42 Gilmore, T. D. Introduction to NF-kappaB: players, pathways, perspectives. Oncogene 25, 6680-6684, doi:10.1038/sj.onc.1209954 (2006).
43 Solt, L. A. & May, M. J. The IkappaB kinase complex: master regulator of NF-kappaB signaling. Immunologic research 42, 3-18, doi:10.1007/s12026-008-8025-1 (2008).
44 Tanaka, M. et al. Embryonic lethality, liver degeneration, and impaired NF-kappa B activation in IKK-beta-deficient mice. Immunity 10, 421-429, doi:10.1016/s1074-7613(00)80042-4 (1999).
45 Sil, A. K., Maeda, S., Sano, Y., Roop, D. R. & Karin, M. IkappaB kinase-alpha acts in the epidermis to control skeletal and craniofacial morphogenesis. Nature 428, 660-664, doi:10.1038/nature02421 (2004).
46 Chu, W. M. et al. JNK2 and IKKbeta are required for activating the innate response to viral infection. Immunity 11, 721-731, doi:10.1016/s1074-7613(00)80146-6 (1999).
47 Hu, Y. et al. Abnormal morphogenesis but intact IKK activation in mice lacking the IKKalpha subunit of IkappaB kinase. Science 284, 316-320, doi:10.1126/science.284.5412.316 (1999).
48 Senftleben, U. et al. Activation by IKKalpha of a second, evolutionary conserved, NF-kappa B signaling pathway. Science 293, 1495-1499, doi:10.1126/science.1062677 (2001).
49 Yamamoto, Y., Verma, U. N., Prajapati, S., Kwak, Y. T. & Gaynor, R. B. Histone H3 phosphorylation by IKK-alpha is critical for cytokine-induced gene expression. Nature 423, 655-659, doi:10.1038/nature01576 (2003).
50 Anest, V. et al. A nucleosomal function for IkappaB kinase-alpha in NF-kappaB-dependent gene expression. Nature 423, 659-663, doi:10.1038/nature01648 (2003).
51 Jiang, Q., Li, F., Cheng, Z., Kong, Y. & Chen, C. The role of E3 ubiquitin ligase HECTD3 in cancer and beyond. Cellular and molecular life sciences : CMLS, doi:10.1007/s00018-019-03339-3 (2019).
52 Li, Y. et al. The HECTD3 E3 ubiquitin ligase suppresses cisplatin-induced apoptosis via stabilizing MALT1. Neoplasia 15, 39-48, doi:10.1593/neo.121362 (2013).
53 Li, Y. et al. The HECTD3 E3 ubiquitin ligase facilitates cancer cell survival by promoting K63-linked polyubiquitination of caspase-8. Cell death & disease 4, e935, doi:10.1038/cddis.2013.464 (2013).
54 Li, Y. et al. The E3 ligase HECTD3 promotes esophageal squamous cell carcinoma (ESCC) growth and cell survival through targeting and inhibiting caspase-9 activation. Cancer letters 404, 44-52, doi:10.1016/j.canlet.2017.07.004 (2017).
55 Cho, J. J. et al. Hectd3 promotes pathogenic Th17 lineage through Stat3 activation and Malt1 signaling in neuroinflammation. Nature communications 10, 701, doi:10.1038/s41467-019-08605-3 (2019).
56 Li, F. et al. HECTD3 mediates TRAF3 polyubiquitination and type I interferon induction during bacterial infection. The Journal of clinical investigation 128, 4148-4162, doi:10.1172/JCI120406 (2018).
57 Siwko, S. K. et al. Lentivirus-mediated oncogene introduction into mammary cells in vivo induces tumors. Neoplasia 10, 653-662, 651 p following 662, doi:10.1593/neo.08266 (2008).
58 Eckhardt, B. L. et al. Genomic analysis of a spontaneous model of breast cancer metastasis to bone reveals a role for the extracellular matrix. Molecular cancer research : MCR 3, 1-13 (2005).
59 Srivastava, K. et al. Postsurgical adjuvant tumor therapy by combining anti-angiopoietin-2 and metronomic chemotherapy limits metastatic growth. Cancer cell 26, 880-895, doi:10.1016/j.ccell.2014.11.005 (2014).
60 Panigrahy, D. et al. Preoperative stimulation of resolution and inflammation blockade eradicates micrometastases. The Journal of clinical investigation 129, 2964-2979, doi:10.1172/JCI127282 (2019).
61 Haupt, W. et al. Monocyte function before and after surgical trauma. Digestive surgery 15, 102-104, doi:10.1159/000018601 (1998).
62 Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646-674, doi:10.1016/j.cell.2011.02.013 (2011).
63 Qian, B. Z. Inflammation fires up cancer metastasis. Seminars in cancer biology 47, 170-176, doi:10.1016/j.semcancer.2017.08.006 (2017).
64 Bouchard, L., Lamarre, L., Tremblay, P. J. & Jolicoeur, P. Stochastic appearance of mammary tumors in transgenic mice carrying the MMTV/c-neu oncogene. Cell 57, 931-936, doi:10.1016/0092-8674(89)90331-0 (1989).
65 Guy, C. T. et al. Expression of the neu protooncogene in the mammary epithelium of transgenic mice induces metastatic disease. Proceedings of the National Academy of Sciences of the United States of America 89, 10578-10582, doi:10.1073/pnas.89.22.10578 (1992).
66 Kim, I. S. & Baek, S. H. Mouse models for breast cancer metastasis. Biochemical and biophysical research communications 394, 443-447, doi:10.1016/j.bbrc.2010.03.070 (2010).
67 Liang, H. et al. Hypoxia induces miR-153 through the IRE1alpha-XBP1 pathway to fine tune the HIF1alpha/VEGFA axis in breast cancer angiogenesis. Oncogene 37, 1961-1975, doi:10.1038/s41388-017-0089-8 (2018).
68 Huang, W. C. et al. Hepatitis B virus X protein induces IKKalpha nuclear translocation via Akt-dependent phosphorylation to promote the motility of hepatocarcinoma cells. Journal of cellular physiology 227, 1446-1454, doi:10.1002/jcp.22860 (2012).
69 Huang, W. C., Ju, T. K., Hung, M. C. & Chen, C. C. Phosphorylation of CBP by IKKalpha promotes cell growth by switching the binding preference of CBP from p53 to NF-kappaB. Molecular cell 26, 75-87, doi:10.1016/j.molcel.2007.02.019 (2007).
70 Temmerman, S. T. et al. Defective nuclear IKKalpha function in patients with ectodermal dysplasia with immune deficiency. The Journal of clinical investigation 122, 315-326, doi:10.1172/JCI42534 (2012).
71 Gloire, G. et al. Promoter-dependent effect of IKKalpha on NF-kappaB/p65 DNA binding. The Journal of biological chemistry 282, 21308-21318, doi:10.1074/jbc.M610728200 (2007).
72 Cao, Y. et al. IKKalpha provides an essential link between RANK signaling and cyclin D1 expression during mammary gland development. Cell 107, 763-775, doi:10.1016/s0092-8674(01)00599-2 (2001).
73 Zandi, E., Chen, Y. & Karin, M. Direct phosphorylation of IkappaB by IKKalpha and IKKbeta: discrimination between free and NF-kappaB-bound substrate. Science 281, 1360-1363, doi:10.1126/science.281.5381.1360 (1998).
74 Woronicz, J. D., Gao, X., Cao, Z., Rothe, M. & Goeddel, D. V. IkappaB kinase-beta: NF-kappaB activation and complex formation with IkappaB kinase-alpha and NIK. Science 278, 866-869, doi:10.1126/science.278.5339.866 (1997).
75 Bonizzi, G. & Karin, M. The two NF-kappaB activation pathways and their role in innate and adaptive immunity. Trends in immunology 25, 280-288, doi:10.1016/j.it.2004.03.008 (2004).
76 Pletz, N. et al. Doxorubicin-induced activation of NF-kappaB in melanoma cells is abrogated by inhibition of IKKbeta, but not by a novel IKKalpha inhibitor. Experimental dermatology 21, 301-304, doi:10.1111/j.1600-0625.2012.01440.x (2012).
77 Massague, J. & Obenauf, A. C. Metastatic colonization by circulating tumour cells. Nature 529, 298-306, doi:10.1038/nature17038 (2016).
78 Demicheli, R., Retsky, M. W., Hrushesky, W. J., Baum, M. & Gukas, I. D. The effects of surgery on tumor growth: a century of investigations. Annals of oncology : official journal of the European Society for Medical Oncology 19, 1821-1828, doi:10.1093/annonc/mdn386 (2008).
79 Krall, J. A. et al. The systemic response to surgery triggers the outgrowth of distant immune-controlled tumors in mouse models of dormancy. Science translational medicine 10, doi:10.1126/scitranslmed.aan3464 (2018).
80 Sulciner, M. L. et al. Resolvins suppress tumor growth and enhance cancer therapy. The Journal of experimental medicine 215, 115-140, doi:10.1084/jem.20170681 (2018).
81 Al-Sahaf, O., Wang, J. H., Browne, T. J., Cotter, T. G. & Redmond, H. P. Surgical injury enhances the expression of genes that mediate breast cancer metastasis to the lung. Annals of surgery 252, 1037-1043, doi:10.1097/SLA.0b013e3181efc635 (2010).
82 Neeman, E., Zmora, O. & Ben-Eliyahu, S. A new approach to reducing postsurgical cancer recurrence: perioperative targeting of catecholamines and prostaglandins. Clinical cancer research : an official journal of the American Association for Cancer Research 18, 4895-4902, doi:10.1158/1078-0432.CCR-12-1087 (2012).
83 Chang, H. Y. et al. Robustness, scalability, and integration of a wound-response gene expression signature in predicting breast cancer survival. Proceedings of the National Academy of Sciences of the United States of America 102, 3738-3743, doi:10.1073/pnas.0409462102 (2005).
84 Coffey, J. C. et al. Excisional surgery for cancer cure: therapy at a cost. The Lancet. Oncology 4, 760-768, doi:10.1016/s1470-2045(03)01282-8 (2003).
85 Forget, P. et al. Do intraoperative analgesics influence breast cancer recurrence after mastectomy? A retrospective analysis. Anesthesia and analgesia 110, 1630-1635, doi:10.1213/ANE.0b013e3181d2ad07 (2010).
86 Lu, Z. et al. Epigenetic therapy inhibits metastases by disrupting premetastatic niches. Nature 579, 284-290, doi:10.1038/s41586-020-2054-x (2020).
87 Schumacher, D., Strilic, B., Sivaraj, K. K., Wettschureck, N. & Offermanns, S. Platelet-derived nucleotides promote tumor-cell transendothelial migration and metastasis via P2Y2 receptor. Cancer cell 24, 130-137, doi:10.1016/j.ccr.2013.05.008 (2013).
88 Labelle, M., Begum, S. & Hynes, R. O. Direct signaling between platelets and cancer cells induces an epithelial-mesenchymal-like transition and promotes metastasis. Cancer cell 20, 576-590, doi:10.1016/j.ccr.2011.09.009 (2011).
89 Strell, C., Lang, K., Niggemann, B., Zaenker, K. S. & Entschladen, F. Surface molecules regulating rolling and adhesion to endothelium of neutrophil granulocytes and MDA-MB-468 breast carcinoma cells and their interaction. Cellular and molecular life sciences : CMLS 64, 3306-3316, doi:10.1007/s00018-007-7402-6 (2007).
90 Li, J. & King, M. R. Adhesion receptors as therapeutic targets for circulating tumor cells. Frontiers in oncology 2, 79, doi:10.3389/fonc.2012.00079 (2012).
91 Wu, Q. D., Wang, J. H., Condron, C., Bouchier-Hayes, D. & Redmond, H. P. Human neutrophils facilitate tumor cell transendothelial migration. American journal of physiology. Cell physiology 280, C814-822, doi:10.1152/ajpcell.2001.280.4.C814 (2001).
92 Schlesinger, M. et al. The inhibition of the integrin VLA-4 in MV3 melanoma cell binding by non-anticoagulant heparin derivatives. Thrombosis research 129, 603-610, doi:10.1016/j.thromres.2011.10.023 (2012).
93 Hoberg, J. E., Popko, A. E., Ramsey, C. S. & Mayo, M. W. IkappaB kinase alpha-mediated derepression of SMRT potentiates acetylation of RelA/p65 by p300. Molecular and cellular biology 26, 457-471, doi:10.1128/MCB.26.2.457-471.2006 (2006).
94 Hoberg, J. E., Yeung, F. & Mayo, M. W. SMRT derepression by the IkappaB kinase alpha: a prerequisite to NF-kappaB transcription and survival. Molecular cell 16, 245-255, doi:10.1016/j.molcel.2004.10.010 (2004).
95 Armache, A. et al. Histone H3.3 phosphorylation amplifies stimulation-induced transcription. Nature 583, 852-857, doi:10.1038/s41586-020-2533-0 (2020).
96 Colomer, C. et al. IKKalpha Kinase Regulates the DNA Damage Response and Drives Chemo-resistance in Cancer. Molecular cell 75, 669-682 e665, doi:10.1016/j.molcel.2019.05.036 (2019).
97 Yamaguchi, T., Miki, Y. & Yoshida, K. Protein kinase C delta activates IkappaB-kinase alpha to induce the p53 tumor suppressor in response to oxidative stress. Cellular signalling 19, 2088-2097, doi:10.1016/j.cellsig.2007.06.002 (2007).
98 Yan, B. et al. Activation of AhR with nuclear IKKalpha regulates cancer stem-like properties in the occurrence of radioresistance. Cell death & disease 9, 490, doi:10.1038/s41419-018-0542-9 (2018).
99 Kwak, Y. T. et al. IkappaB kinase alpha regulates subcellular distribution and turnover of cyclin D1 by phosphorylation. The Journal of biological chemistry 280, 33945-33952, doi:10.1074/jbc.M506206200 (2005).