Abdolvand B, Zarghami R, Salari A (2018) The effects of AgNO3 and 2ip (N6 -(2-isopentenyl) adenine) on different stages of somatic embryogenesis in date palm (Phoenix dactylifera l.) (cv. medjool). Pak J Bot 50(2):495–502.
Alam N, Anis M (2019) Influence of silver nitrate in enhancing the in vitro shoot regeneration in Mucuna pruriens (L.) DC. – a multipurpose medicinal legume. Res J Life Sci Bioinform Pharmaceutic Chem Sci 5(2):476. doi:10.26479/2019.0502.34
Alexieva V, Sergiev I, Mapelli S, Karanov E (2001) The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat. Plant Cell Environ 24(12):1337–1344. doi:10.1046/j.1365-3040.2001.00778.x
Al Ramadan R, Karas M, Ranusova P, Moravcikova J (2021) Effect of silver nitrate on in vitro regeneration and antioxidant responses of oilseed rape cultivars (Brassica napus L.). J Microbiol Biotechnol Food Sci 10(6):e4494. doi:10.15414/jmbfs.4494
Anantasaran J, Kanchanapoom K (2008) Influence of medium formula and silver nitrate on in vitro plant regeneration of Zinnia cultivars. Songklanakarin J Sci Technol 30(1):1–6.
Arnon DI (1949) Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol 24(1):1. doi:10.1104/pp.24.1.1
Arnon DI, Stout PR (1939) The essentiality of certain elements in minute quantity for plants with special reference to copper. Plant Physiol 14(2):371–375. doi:10.1104/pp.14.2.371
Arora A, Sairam RK, Srivastava GC (2002) Oxidative stress and antioxidative system in plants. Curr Sci 82:1227–1238.
Asada K, Kanematsu S, Uchida K (1977) Superoxide dismutases in photosynthetic organisms. Arch Biochem Biophys 74:551–564. doi:10.1007/978-1-4684-3270-1_46
Bais HP, Sudha GS, Ravishankar GA (2000) Putrescine and AgNO3 influences shoot multiplication, in vitro flowering and endogenous titres of polyamines in Chichorium intybus L cv Lucknow Local. J Plant Growth Regul 19(2):238–248. doi:10.1007/s003440000012
Bais HP, Sudha GS, Ravishankar GA (2001) Influence of putrescine AgNO3 and polyamine inhibitors on the morphogenetic response in untransformed and transformed tissues of Chichorium intybus and their regenerants. Plant Cell Rep 20(6):547–555. doi:10.1007/s002990100367
Baker AJM, Walker PL (1990) Eco-physiology of metal uptake by tolerant plants. In: Shaw AJ (ed) Heavy metal tolerance in plants: evolutionary aspects. CRC Press, Boca Raton, FL, pp 155–177.
Baszynski T, Król M, Krupa Z, Ruszkowska M, Wojcieska U, Wolinska D (1982) Photosynthetic apparatus of spinach exposed to excess copper. Z. Pflanzenphysiol 108(5):385–395. doi:10.1016/S0044-328X(82)80163-3
Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39(1):205–207. doi:10.1007/BF00018060
Becana M, Moran JF, Iturbe-Ormaetxe I (1986) Iron-dependent oxygen free radical generation in plants subjected to environmental stress: toxicity and antioxidant protection. Plant Soil 201(1):137–147. doi:10.1023/A:1004375732137
Beyer EM (1976a) A potent inhibitor of ethylene action in plants. Plant Physiol 58(3):268–271. doi:10.1104/pp.58.3.268.
Beyer EM (1976b) Silver ion: a potent anti-ethylene agent in cucumber and tomato. HortSci 11(3):175–196.
Bidabadi SS, Jain SM (2020) Cellular, molecular, and physiological aspects of in vitro plant regeneration. Plants 9(6):702. doi:10.3390/plants9060702
Burkhead JL, Reynolds KAG, Abdel-Ghany SE, Cohu CM, Pilon M (2009) Copper homeostasis. New Phytol 182(4):799–816. doi:10.1111/j.1469-8137.2009.02846.x.
Cakmak I, Marschner H (1992) Magnesium deficiency and high light intensity enhance activities of superoxide dismutase, ascorbate peroxidase, and glutathione reductase in bean leaves. Plant Physiol 98(4):1222–1227. doi:0032-0889/92/98/1 222/06/$01
Caldas LS, Haridasan P, Ferreira ME (1990) Meios nutritivos. In: Torres AC, Caldas LS (Eds) Técnicas e Aplicações da Cultura de Tecidos de Plantas (pp 37–70). ABCTP/EMBRAPA-CNPH, Brasília.
Cardoso JC (2019) Silver nitrate enhances in vitro development and quality of shoots of Anthurium andraeanum. Scientia Hortic 253(27):358–363. doi:10.1016/j.scienta.2019.04.054
Chen SX, Schopfer P (1999) Hydroxyl-radical production in physiological reactions. A novel function of peroxidase. Eur J Biochem 260(3):726–735. doi:10.1046/j.1432-1327.1999.00199.x.
Ciardi J, Klee H (2001) Regulation of ethylene mediated responses at the level of the receptor. Ann Bot 88(5):813–822. doi:10.1006/anbo.2001.1523
Cristea TO, Leonte C, Brezeanu C, Brezeanu M, Ambarus S, Calin M, Prisecaru M (2012) Effect of AgNO3 on androgenesis of Brassica oleracea L. anthers cultivated in vitro. Afri J Biotechnol 11(73):13788–13795. doi:10.5897/AJB12.2157
Dahleen LS (1995) Improved plant regeneration from barley callus cultures by increased copper levels. Plant Cell Tiss Organ Cult 43:267–269. doi:10.1007/BF00039954
Dahleen LS, Bregitzer P (2002) An improved media system for higher regeneration rates from barley immature embryo derived callus cultures of commercial cultivars. Crop Sci 42(3):934–938. doi:10.2135/cropsci2002.9340
Dalton SJ (2020) A reformulation of Murashige and Skoog medium (WPBS medium) improves embryogenesis, morphogenesis and transformation efficiency in temperate and tropical grasses and cereals. Plant Cell Tiss Organ Cult 141:257–273. doi:10.1007/s11240-020-01784-8
de Almeida M, Graner ÉM, Brondani GE, de Oliveira LS, Artioli FA, de Almeida LV, Leone GF, Baccarin FJB, de Oliveira Antonelli P, Cordeiro GM, Oberschelp GPJ (2015) Plant morphogenesis: theorical bases. Adv For Sci 2(1):13–22.
DeFossard RA (1974) Responses of the callus from zygotal and microsporal tobacco (Nicotiana tabacum L.) to various combinations of iodole acetic acid and kinetine. New Phytol 77(4):699. doi:10.1111/j.1469-8137.1974.tb01298.x
Delhaize E, Loneragan JF, Webb J (1985) Development of three copper metalloenzyme in clover leaves. Plant Physiol 78(1):4–7. doi:10.1104/pp.78.1.4.
Diab MI (2017) In vitro propagation of the endangered date palm (Phoenix dactylifera L.) cv. Ghazal: 2- Improvement of germination and development of embryos by silver nitrate and silver thiosulfate. IOSR J Biotechnol Biochem 3(4):66–74. doi:10.9790/264X-03046674
Drazkiewicz M, Skórzynska-Polit E, Krupa Z (2004) Copper-induced oxidative stress and antioxidant defence in Arabidopsis thaliana. BioMetals 17(4):379–387. doi:10.1023/b:biom.0000029417.18154.22
Droppa M, Horvath G (1990) The role of copper in photosynthesis—critical review. Plant Sci 9(2):111–123. doi:10.1080/07352689009382284
Dudev T, Lim C (2008) Metal binding affinity and selectivity in metalloproteins: insights from computational studies. Annu Rev Biophys 37:97–116. doi:10.1146/annurev.biophys.37.032807.125811
Dunn GM, Huth JR, Lewty MJ (1997) Coating nursery containers with copper carbonate improves root morphology of five native Australian tree species used in agroforestry systems. Agrofor Systems 37:143–155. doi:10.1023/A:1005863707277
Dwivedi P, Amin D, Sharma A (2020) Effect of differential concentration of micronutrient copper and zinc on in vitro morphogenesis of Foeniculum vulgare Mill. Plant Physiol Rep doi:10.1007/s40502-019-00478-4
Ehsanpour AA, Jones MGK (2001) Plant regeneration from mesophyll protoplasts of potato (Solanum tuberosum L.) cultivar Delaware using silver thiosulfate (STS). J Sci Islamic Repub Iran 12(2):103–110.
Faria GA, Felizardo LM, Ferreira AFA, Rocha PS, Suzuki AN, Souza AS, Junghans TG, Costa MAPC, Peixoto APB, Morais AR, Lopes BG, Oliveira TA (2017) Concentrations of silver nitrate in the in vitro development and conservation of Passiflora gibertii N. E. Brown. American J Plant Sci 8(12):2944–2955. doi:10.4236/ajps.2017.812199
Fernandes JC, Henriques FS (1991) Biochemical, physiological, and structural efects of excess copper in plants. Bot Rev 57(3):246–273. doi:10.1007/BF02858564
Fuentes S, Calheiros M, Manetti-Filho J, Vieira L (2000) The effects of silver nitrate and different carbohydrate sources on somatic embryogenesis in Coffea canephora. Plant Cell Tiss Organ Cult 60(1):5–13. doi:10.1023/A:1006474324652
Garcia C, Furtado de Almeida AA, Costa M, Britto D, Valle R, Royaert S, Marelli JP (2019) Abnormalities in somatic embryogenesis caused by 2,4-D: an overview. Plant Cell Tiss Organ Cult 137:193–212. doi:10.1007/s11240-019-01569-8
Ghobeishavi H, Uliaie ED, Alavikia SS, Valizadeh M (2015) Study of factors influencing somatic embryogenesis in Rice (Oryza sativa L.). Intl J Adv Biol Biom Res 3(1):43–50.
Giridhar P, Indu EP, Ramu D, Ravishankar GA (2003) Effect of silver nitrate on in vitro shoot growth of coffee. Trop Sci 43(3):144–146. doi:10.1002/ts.106
Giridhar P, Indu EP, Vinod K, Chandrashekar A, Ravishankar GA (2004) Direct somatic embryogenesis from Coffea arabica L. and Coffea canephora P ex Fr. under the influence of ethylene action inhibitor-silver nitrate. Acta Physiol Plant 26(3):299–305. doi:10.1007/s11738-004-0020-0
Good R (1931) A theory of plant geography. New Phytol 30(3):139–171. doi:10.1111/j.1469-8137.1931.tb07414.x
Gori P, Schiff S, Santandrea G, Bannici A (1998) Response of in vitro cultures of Nicotiana tabacum L. to copper stress and selection of plants from Cu-tolerant callus. Plant Cell Tiss Organ Cult 53(3):161–169. doi:10.1023/A:1006048031956
Gressel J, Galun E (1994) Causes of photooxidative stress and amelioration of defence systems in plants. In: Foyer CH, Mullineaux PM (Eds), CRC Press Boca Raton FL, Pp.237–327. doi:10.1201/9781351070454
Grieve CM, Grattan SR (1983) Rapid assay for the determination of water soluble quaternary ammonium compounds. Plant Soil 70(2):303–307. doi:10.1007/BF02374789
Halliwell B, Gutteridge JM (1984) Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem J 219(1):1–14. doi:10.1042/bj2190001
Hameed A, Ahmed MZ, Hussain T, Aziz I, Ahmad N, Gul B, Nielsen BL (2021) Effects of salinity stress on chloroplast structure and function. Cells 10(8):2023. doi:10.3390/cells10082023
Hansch R, Mendel RR (2009) Physiological functions of mineral micronutrients (Cu, Zn, Mn, Fe, Ni, Mo, B, Cl). Curr Opin Plant Biol 12(3):259–266. doi:10.1016/j.pbi.2009.05.006
Hemeda HM, Klein BP (1990) Effects of naturally occurring antioxidants on peroxidase activity of vegetable extracts. J Food Sci 55(1):184–185. doi:10.1111/j.1365-2621.1990.tb06048.x
Huang WL, Wu FL, Huang HY, Huang WT, Deng CL, Yang LT, Huang ZR, Chen LS (2020) Excess copper-induced alterations of protein profiles and related physiological parameters in citrus leaves. Plants 9(3):291. doi:10.3390/plants9030291
Hyde CL, Phillips GC (1996) Silver nitrate promotes shoot development and plant regeneration of chile pepper (Capsicum annuum L.) via organogenesis. In Vitro Cell Dev Biol – Plant 32:72–80.
Ibrahim AS, Fahmy AH, Ahmed SS (2018) Copper nanoparticles elevate regeneration capacity of (Ocimum basilicum L.) plant via somatic embryogenesis. Plant Cell Tiss Organ Cult 136:41–50. doi:10.1007/s11240-018-1489-3
Isah T (2019) Changes in the biochemical parameters of albino, hyperhydric and normal green leaves of Caladium bicolor cv. “Bleeding hearts” in vitro long-term cultures. J Photochem Photobiol B: Biol 191:88–98. doi:10.1016/j.jphotobiol.2018.12.01
Isah T, Umar S (2018) Influencing in vitro clonal propagation ofChonemorpha fragrans (moon) Alston by culture media strength, plant growth regulators, carbon source and photoperiodic incubation. J For Res 31(9):27–43. doi:10.1007/s11676-018-0794-3
Jain P, Kachhwaha S, Kothari SL (2009) Improved micropropagation protocol and enhancement in biomass and chlorophyll content in Stevia rebaudiana (Bert.) Bertoni by using high copper levels in the culture medium. Sci Hortic 119(3):315–319. doi:10.1016/j.scienta.2008.08.015
Javed SB, Alatar AA, Riyadh Basahi R, Anis M, Faisal M, Husain FM (2017) Copper induced suppression of systemic microbial contamination in Erythrina variegata L. during in vitro culture. Plant Cell Tiss Organ Cult 128(2):249–258. doi:10.1007/s11240-016-1104-4
Joshi A, Kothari SL (2007) High copper levels in the medium improves shoot bud differentiation and elongation from the cultured cotyledons of Capsicum annuum L. Plant Cell Tiss Organ Cult 88(2):127–133. doi:10.1007/s11240-006-9171-6
Kairong C, Xing G, Liu X, Xing G, Wang Y (1999) Effect of hydrogen peroxide on somatic embryogenesis of Lycium barbarum L. Plant Sci 146:9–16.
Kaur A, Kumar A (2020) The effect of gelling agent, medium pH and silver nitrate on adventitious shoot regeneration in Solanum tuberosum. doi:10.1101/2020.01.03.894063
Khajuria AK, Hano C, Bisht NS (2021) Somatic embryogenesis and plant regeneration in Viola canescens Wall. Ex. Roxb.: an endangered Himalayan herb. Plants 10(4):761. doi:10.3390/plants10040761
Kim DH, Gopal J, Sivanesan I (2017) Nanomaterials in plant tissue culture: the disclosed and undisclosed. RSC Adv 7:36492–36505. doi:10.1039/c7ra07025jrsc.li/rsc-advances
Kong DM, Shen HL, Li N (2012) Influence of AgNO3 on somatic embryo induction and development in Manchurian ash (Fraxinus mandshurica Rupr.). Afri J Biotechnol 11(1):120–125. doi:10.5897/AJB11.3061
Kong L, Yeung EC (1995) Effect of silver nitrate and polyethylene glycol on white spruce (Picea glauca) somatic embryo development: enhancing cotyledonary embryo formation and endogenous ABA content. Physiol Plant 93(2):298–304.doi:10.1111/j.1399-3054.1995.tb02232.x
Kothari SL, Agrawal K, Kumar S (2004) Inorganic nutrient manipulation for highly improved in vitro plant regeneration in finger millet [Eleusine coracana (L.) Gaertn.]. In Vitro Cell Dev Biol – Plant 40(5):515–519. doi:10.1079/IVP2004564
Kothari-Chajer A, Sharma M, Kachhwaha S, Kothari SL (2008) Micronutrient optimization results into highly improved in vitro plant regeneration in kodo (Paspalum scrobiculatum L.) and finger (Eleusine coracana (L.) Gaertn.) millets. Plant Cell Tiss Organ Cult 94(2):105–112. doi:10.1007/s11240-008-9392-y
Kumar V, Parvatam G, Ravishankar GA (2009a) AgNO3 - a potential regulator of ethylene activity and plant growth modulator. Electronic J Biotechnol 12(2):1–15. doi:10.2225/vol12-issue2-fulltext-1
Kumar R, Mehrotra NK, Nautiyal BD, Kumar P, Singh PK (2009b) Effect of copper on growth, yield and concentration of Fe, Mn, Zn and Cu in wheat plants (Triticum aestivum L.). J Environ Biol 30(4):485–488.
Kumar V, Ramakrishna A, Ravishankar GA (2007) Influence of different ethylene inhibitors on somatic embryogenesis and secondary embryogenesis from Coffea canephora P ex Fr. In Vitro Cell Dev Biol – Plant 43(6):602–607. doi:10.1007/s11627-007-9067-0
Lamb C, Dixon RA (1997) The oxidative burst in plant disease resistance. Annu Rev Plant Physiol Plant Mol Biol 48:251–275. doi:10.1146/annurev.arplant.48.1.251
Lambardi M, Sharma KK, Thorpe TA (1993) Optimization of in vitro bud induction and plantlet formation from mature embryos of Aleppo pine (Pinus halepensis Mill.). In Vitro Cell Dev Biol 29:189–199.
Laukkannen AL, Haggmen H, Kontunen-Soppela S, Hohtola A (1999) Tissue browning of in vitro culture of Scots pine: role of peroxidase and polyphenol oxidase. Physiol Plant 106(3):337–343. doi:10.1034/j.1399-3054.1999.106312.x
Lequeux H, Hermans C, Lutts S, Verbruggen N (2010) Response to copper excess in Arabidopsis thaliana: impact on the root system architecture, hormone distribution, lignin accumulation and mineral profile. Plant Physiol Biochem 48(8):673–682. doi:10.1016/j.plaphy.2010.05.005
Lipman CB, Mackinney G (1931) Proof of the essential nature of copper for higher green plants. Plant Physiol 6(3):593–599. doi:10.1104/pp.6.3.593
Lokhande VH, Nikam TD, Penna S (2010) Biochemical, physiological and growth changes in response to salinity in callus cultures of Sesuvium portulacastrum L. Plant Cell Tiss Organ Cult 102(1):17–25. doi:10.1007/s11240-010-9699-3
Lombardi L, Sebastiani L (2005) Copper toxicity in Prunus cerasifera: growth and antioxidant enzyme responses of in vitro grown plants. Plant Sci 168(3):797–802. doi:10.1016/j.plantsci.2004.10.012
López-Gómez PT, Iracheta-Donjuan L, Ojeda-Zacarías MDC, Ducos JP (2016) Culture medium and inhibitors of ethylene in the coffee somatic embryogenesis. Revist Mexican de Ciencias Agríc 7(7):1749–1757.
Macnair MR, Tilstone GH, Smith SE (2000) The genetics of metal tolerance and accumulation in higher plants. In: Terry N, Banuelos G (Eds.), Phytoremediation of contaminated soil and water, pp 235–250. CRC Press LLC.
Mahendra VSSP, Dutta Gupta S (2004) Trichromatic sorting of in vitro regenerated plants of Gladiolus using adaptive resonance theory. Curr Sci 87(3):10.
Maksymiec W (1997) Effect of copper on cellular processes in higher plants. Photosynthetic 34(3):321–342. doi:10.1023/A:1006818815528
Malik WA, Mahmood I, Abdul Razzaq, Afzal M, Shah GA, Iqbal A, Zain M, Ditta A, Asad SA, Ahmad I, Mangi N, Ye W (2021) Exploring potential of copper and silver nano particles to establish efficient callogenesis and regeneration system for wheat (Triticum aestivum L.). GM Crops Food 1–22. doi:10.1080/21645698.2021.1917975
Memon N (2012) In vitro propagation of Gladiolus plantlets and cormels. J Hort Sci Orn Plants 4(3):280–291. doi:10.5829/idosi.jhsop.2012.4.3.258
Memon N, Yasmin A, Pahoja VM, Hussain Z, Ahmad I (2012) In vitro regeneration of gladiolus propagules. J Agricult Technol 8(7):2331–2351.
Memon NUN, Wahocho NA, Miano TF, Leghari MH (2016) Propagation of Gladiolus corms and cormels: a review. African J Biotechnol 15(32):1699–1710. doi:10.5897/AJB2012.1396
Mookkan M, Andy G (2014) AgNO3 boosted high-frequency shoot regeneration in Vigna mungo (L.) Hepper. Plant Signal Behav 9(10):e972284. doi:10.4161/psb.32165
Moustakas M, Lanaras T, Symeonidis I, Karataglis S (1994) Growth and some photosynthetic characteristics of field grown Avena sativa under copper and lead stress. Photosynthetic 30(3):389–396.
Mujib A, Ali M, Tonk D, Zafar N (2017) Nuclear 2C DNA and genome size analysis in somatic embryo regenerated gladiolus plants using flow cytometry. Adv Hort Sci 31(3):165–174. doi:10.13128/ahs-21956
Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15(3):473–497. doi:10.1111/j.1399-3054.1962.tb08052.x
Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by the ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22(5):867–880. doi:10.1093/oxfordjournals.pcp.a076232
Narain K (2004) - Garden life. Glorious gladioli. - The Tribune magazine. Spectrum. http://www.tribuneindia.com/2004/20040905/spectrum/garden.htm.
Nic-Can GI, Galaz-Avalos RM, De-la-Peña C, Alcazar-Magaña A, Wrobel K, Loyola-Vargas VM (2015) Somatic embryogenesis: identified factors that lead to embryogenic repression: a case of species of the same genus. PLoS One 10:e0126414. doi:10.1371/journal.pone.0126414
Niedz R, Evens TJ (2007) Regulating plant tissue growth by mineral nutrition. In Vitro Cell Dev Biol – Plant 43(4):370–381. doi:10.1007/s11627-007-9062-5
Nirwan RS, Kothari SL (2003) High copper levels improve callus induction and plant regeneration in Sorghum bicolor (L.) Moench. In Vitro Cell Dev Biol – Plant 39(2):161–164. doi:10.1079/IVP2002385
Nomura T, Itouga M, Kojima M, Kato Y, Sakakibara H, Hasezawa S (2015) Copper mediates auxin signalling to control cell differentiation in the copper moss Scopelophila cataractae. J Exp Bot 66(5):1205–1213. doi:10.1093/jxb/eru470
Ochatt SJ, Revilla MA (2016) From stress to embryos: some of the problems for induction and maturation of somatic embryos. In: Germana M, Lambardi M (eds), In Vitro Embryogenesis in Higher Plants, Methods in Molecular Biology Vol. 1359. Humana Press, New York NY. doi:10.1007/978-1-4939-3061-6_31
Ozudogru EA, Ozden-Tokatli Y, Akcin A (2005) Effect of silver nitrate on multiple shoot formation of virginia-type peanut through shoot tip culture. In Vitro Cell Dev Biol — Plant 41(2):151–156. doi:10.1079/ivp2004591
Parimalan R, Giridhar P, Ravishankar G (2011) Enhanced shoot organogenesis in Bixa orellana L. in the presence of putrescine and silver nitrate. Plant Cell Tiss Organ Cult 105(3):285–290. doi:10.1007/s11240-010-9865-7
Parimalan R, Giridhar P, Ravishankar GA (2010) Enhanced shoot organogenesis in Bixa orellana L. in the presence of putrescine and silver nitrate. Plant Cell Tiss Organ Cult 105(3):285–290. doi:10.1007/s11240-010-9865-7
Park EJ, Yi J, Kim Y, Choi K, Park K (2010) Silver nanoparticles induce cytotoxicity by a Trojan-horse type mechanism. Toxicol In Vitro 24(3):872–878. doi:10.1016/j.tiv.2009.12.001
Perl A, Aviv D, Galun E (1988) Ethylene and in vitro culture of potato: suppression of ethylene generation vastly improves protoplast yield, plating efficiency and transient expression of an alien gene. Plant Cell Rep 7(6):403–406. doi:10.1007/BF00269523
Petrova M, Zayova E, Vitkova A (2011) Effect of silver nitrate on in vitro root formation of Gentiana lutea. Rom Biotechnol Lett 16(6):53–58.
Piqueras A, Cortina M, Serna MD, Casas JL (2002) Polyamines and hyperhydricity in micropropagated carnation shoots. Plant Sci 162(5):671–678. doi:10.1016/S0168-9452(02)00007-9
Pontes MS, Graciano DE, Antunes DR, Santos JS, Arruda GJ, Botero ER, Grillo R, Lima SM, Andrade LH, Caires AR, Santiago EF (2020) In vitro and in vivo impact assessment of eco-designed CuO nanoparticles on non-target aquatic photoautotrophic organisms. J Hazard Mater 396:122484. doi:10.1016/j.jhazmat.2020.122484
Popelka JC, Altpeter F (2001) Interactions between genotypes and culture media components for improved in vitro response of rye (Secale cereale L) inbred lines. Plant Cell Rep 20:575–582. doi:10.1007/s002990100369
Preece JE (1995) Can nutrient salts partially substitute for plant growth regulators. Plant Tiss Cult Biotechnol 1:26–37.
Purnhauser L, Gyulai G (1993) Effect of copper on shoot and root regeneration in wheat, triticale, rape and tobacco tissue cultures. Plant Cell Tiss Organ Cult 35:131–139. doi:10.1007/BF00032962
Rahmati Ishka M, Vatamaniuk OK (2020) Copper deficiency alters shoot architecture and reduces fertility of both gynoecium and androecium in Arabidopsis thaliana. Plant Direct 00:1–18. doi:10.1002/ pld3.28
Ramage CM, Williams RR (2002) Mineral nutrition and plant morphogenesis. In Vitro Cell Dev Biol—Plant 38(2):116–124. doi:10.1079/IVP2002269
Ravet K, Pilon M (2013) Copper and iron homeostasis in plants: the challenges of oxidative stress. Antioxidants Redox Signal 19(9):919–932. doi:10.1089/ars.2012.5084
Rego LV, de Faria RT (2001) Tissue culture in ornamental plant breeding: a review. Cropp Breed Applied Biotechnol 1(3):283–300. doi:10.13082/1984-7033.v01n03a09
Robson AD, Reuter DJ (1981) Diagnosis of copper deficiency and toxicity. Copp Soils Plants. http://agris.fao.org/agris-search/search. do?recordID=US8608668
Roh KH, Kwak BK, Kim JB, Lee KR, Kim HK, Kim SH (2012) The influence of silver thiosulfate and thidiazuron on shoot regeneration from cotyledon explants of Brassica napus. J Plant Biotechnol 39(3):133–139. doi:10.5010/JPB.2012.39.3.133
Rojas-Lorz L, Arrieta-Espinoza G, Valdez-Melara M, Pereira LFP, Gatica-Arias A (2019) Influence of silver nitrate on somatic embryogenesis induction in Arabica Coffee (Coffea arabica L.). Brazilian Archives Biol Technol 62:e19180228. doi:10.1590/1678-4324-2019180228
Roshanfekrrad M, Zarghami R, Hassani H, Zakizadeh H, Salari A (2017) Effect of AgNO3 and BAP on root as a novel explant in date palm (Phoenix dactylifera cv. Medjool) somatic embryogenesis. Pak J Biol Sci 20(1):20–27. doi:10.3923/pjbs.2017.20.27
Roustan JP, Latche A, Fallot J (1990) Control of carrot somatic embryogenesis by AgNO3, an inhibitor of ethylene action: effect on arginine decarboxylase activity. Plant Sci 67(1):89–95. doi:10.1016/0168-9452(90)90054-R
Rout GR, Mohapatra A, Jain SM (2006) Tissue culture of ornamental pot plant: a critical review on present scenario and future prospects. Biotechnol Adv 24(6):531–560. doi:10.1016/j.biotechadv.2006.05.001
Sahrawat AK, Chand S (1999) Stimulatory effect of copper on plant regeneration in indica rice (Oryza sativa L.). J Plant Physiol 10(4):517–22. doi:10.1016/S0176- 1617(99)80292-2.
Sakhanokho HF, Kelley RY, Rajasekaran K (2008) First report of plant regeneration via somatic embryogenesis from shoot apex-derived callus of Hedychium muluense R. M. Smith. J Crop Imp 21(2):191–200. doi:10.1080/15427520701885758
Sakhanokho HF, Rajasekaran K, Kelley RY (2009) Somatic embryogenesis in Hedychium bousigonianum. HortScience 44(5):1487–1490. doi:10.21273/HORTSCI.44.5.1487
Sánchez-Viveros G, Ferrara-Cerrato R, Alarcón A (2011) Short-term effects of arsenate induced toxicity on growth, chlorophyll and carotenoid contents, and total content of phenolic compounds of Azolla filiculoides. Water Air Soil Pollut 217(1):455–462. doi:10.1007/s11270-010-0600-0
Shah SH, Ali S, Jan SA, Jalal-ud–din, Ali GM (2014) Assessment of silver nitrate on callus induction and in vitro shoot regeneration in tomato (Solanum lycopersicum Mill.). Pak J Bot 46(6):2163–2172.
Shelford VE (1913) Animal communities in temperate America, as illustrated in the Chicago region; a study in animal ecology. The Geographic Soceity of Chicago Bulletin 5(386):1877–1968. doi:10.5962/bhl.title.34437
Shelford VE (1931) Some concepts of bioecology. Ecol 12(3):455–467. doi:10.2307/1928991
Shioi Y, Tamai H, Sasa T (1978) Inhibition of photosystem II in green alga Ankistrodesmus falcatus by copper. Physiol Plant 44(4):434–438. doi:10.1111/j.1399-3054.1978.tb01651.x
Shkolnik MY (1984) Trace elements in plants. Elsevier, Amsterdam, p 463.
Silvestri C, Rugini E, Cristofori V (2019) The effect of CuSO4 for establishing in vitro culture, and the role nitrogen and iron sources in in vitro multiplication of Corylus avellana L. cv. Tonda Gentile Romana. Plant Biosystems – An Intl J Dealing with all Aspects of Plant Biol 154(5):1–7. doi:10.1080/11263504.2018.1549610
Singh HP (2011) Paradigm in marketing of horticultural produce. Indian Hort 56(3):3–8.
Sirisom Y, Te-Chato S (2012) The effect of peptone and silver nitrate on in vitro shoot formation in Hevea brasiliensis Muell Arg. J Agric Technol 8(4):1509–1516.
Souza PVL, Lima-Melo Y, Carvalho FE, Reichheld J-P, Fernie AR, Silveira JAG, Daloso DM (2019) Function and compensatory mechanisms among the components of the chloroplastic redox network. Crit Rev Plant Sci 38(1):1–28. doi:10.1080/07352689.2018.1528409
Steinitz B, Barr N, Tabib Y, Vaknin Y, Bernstein N (2010) Control of in vitro rooting and plant development in Corymbia maculata by silver nitrate, silver thiosulfate and thiosulfate ion. Plant Cell Rep 29(11):1315–1323. doi:10.1007/s00299-010-0918-5
Strader LC, Beisner ER, Bartel B (2009) Silver ions increase auxin efflux independently of effects on ethylene response. Plant Cell 21(11):3585–3590. doi:10.1105/tpc.108.065185
Sunandakumari C, Martin KP, Chithra M, Madhusoodanan PV (2004) Silver nitrate induced rooting and flowering in vitro on rare rhoeophytic woody medicinal plant, Rotula aquatica Lour. Indian J Biotech 3(3):418–421.
Tahiliani S, Kothari SL (2012) Increased copper content of the medium improves plant regeneration from immature embryo-derived callus of Wheat (Triticum aestivum). J Plant Biochem Biotechnol 13:85–88. doi:10.1007/BF03263199
Tamimi SM (2015) Effects of ethylene inhibitors, silver nitrate (AgNO3), cobalt chloride (CoCl2) and aminooxyacetic acid (AOA), on in vitro shoot induction and rooting of banana (Musa acuminata L.). Afri J Biotechnol 14(32):2510–2516. doi:10.5897/AJB2015.14788
Tamimi SM, Othman H (2020) Effects of copper sulphate on shoot multiplication and rooting of banana (Musa acuminata L.) (In vitro study). Asian J Plant Sci 19(3):200–204. doi:10.3923/ajps.2020.200.204
Uliaie ED, Farsi M, Ghreyazie B, Imani J (2008) Effect of genotype and AgNO3 on shoot regeneration in winter cultivars of rapeseed (Brassica napus). Pakistan J Biol Sci 11(16):2040–2043. doi:10.3923/pjbs.2008.2040.2043
Vain P, Yean H, Flament P (1989) Enhancement of production and regeneration of embryogenic type II callus in Zea mays L. by AgNO3. Plant Cell Tiss Organ Cult 18(2):143–151. doi:10.1007/BF00047740
Venkatachalama P, Jinua U, Gomathia M, Mahendrana D, Ahmadc N, Geethad N, Sahi SV (2017) Role of silver nitrate in plant regeneration from cotyledonary nodal segment explants of Prosopis cineraria (L.) Druce.: a recalcitrant medicinal leguminous tree. Biocat Agric Biotechnol 12:286–291. doi:10.1016/j.bcab.2017.10.017
Verma JP, Singh V, Yadav J (2011) Effect of copper sulphate on seed germination, plant growth and peroxidase activity of mung bean (Vigna radiata). Int J Bot 7(2):200–204. doi:10.3923/ijb.2011.200.204
Watanabe S, Kojima K, Ide Y, Sasaki S (2000) Effects of saline and osmotic stress on proline and sugar accumulation in Populus euphratica in vitro. Plant Cell Tiss Organ Cult 63(3):199–206. doi:10.1023/A:1010619503680
Weigel M, Varotto C, Pesaresi P, Finazzi G, Rappaport F, Salamini F, Leister D (2003) Plastocyanin is indispensable for photosynthetic electron flow in Arabidopsis thaliana. J Biological Chem 278(33):31286–31289. doi:10.1074/jbc.M302876200
Wellburn AR (1994) The spectral determinations of chlorophylls a and b, as well as total carotenoids using various solvents with the spectrophotometers of different resolution. J Plant Physiol 144(3):307–313. doi:10.1016/S0176-1617(11)81192-2
Wu LM, Wei YM, Zheng YL (2006) Effects of silver nitrate on the tissue culture of immature wheat embryos. Russian J Plant Physiol 53(4):530–34. doi:10.1134/S1021443706040157
Wu LM, Wei YM, Zheng YL (2006) Effects of silver nitrate on the tissue culture of immature wheat embryos. Russ J Plant Physiol 53(4):530–596. doi:10.1134/S1021443706040157
Yin LY, Cheng YW, Espinasse B, Colman BP, Auffan M, Wiesner M, Rose J, Liu J, Bernhardt ES (2011) More than the ions: the effects of silver nanoparticles on Lolium multiflorum. Environ Sci Technol 45(6):2360–2367. doi:10.1021/es103995x
Yruela I (2005) Copper in plants. Braz J Plant Physiol 17(1):145–156. doi:10.1590/S1677-04202005000100012
Zavattieri MA, Frederico AM, Lima M, Sabino R, Arnholdt-Schmitt B (2010) Induction of somatic embryogenesis as an example of stress-related plant reactions. Electronic J Biotechnol 13(1):12–13. doi:10.2225/vol13-issue1-fulltext-4
Zenk MH (1996) Heavy metal detoxification in higher plants—a review. Gene 179(1):21–30. doi:10.1016/S0378-1119(96)00422-2
Zhang P, Phansiri S, Puonti KJ (2001) Improvements of cassava shoot organogenesis by the use of silver nitrate in vitro. Plant Cell Tiss Organ Cult 67(10):47–54. doi: 10.1023/A:1011654128198
Ziv M, Halevy AH, Shilo R (1970) Organs and plantlets regeneration of Gladiolus through tissue culture. Ann Bot 34(136):671–676.