Over the past 13 years (2007–2020), vector control interventions have been scaled-up substantially across Uganda. Whilst the impact of LLINs and IRS on epidemiological outcomes has been assessed routinely [4, 5, 7, 32, 53, 54], the effect of these interventions on malaria vector species is less commonly investigated. Here, we characterized vector species composition and density in three epidemiologically diverse settings from 2011 to 2016 while vector control interventions were implemented across the country by the Uganda Ministry of Health (National Malaria Control Division).
As expected, we found that Anopheles densities were higher during the rainy season in all study sites, consistent with other studies [48, 55]. Prior to the widespread implementation of vector control interventions, Anopheles species were sympatric but composition varied between the sites, with An. arabiensis predominant in Walukuba (the lowest transmission site) and An. gambiae s.s. predominant in both Kihihi and Nagongera (the moderate and high transmission sites respectively). Delivery of LLINs was associated with significant declines in vector density for An. funestus in Walukuba, An. gambiae s.s. in Kihihi and in both An. gambiae s.s. and An. arabiensis in Nagongera. Addition of IRS to LLINs in Nagongera was associated with a decline in all vector species, albeit with a greater impact on An. gambiae s.s. and An. funestus, as reported elsewhere [56, 57]. Consequently, An. arabiensis became the predominant species in this area. Understanding the impact of vector control interventions on local malaria vector species is paramount for assessing gaps in current vector control tools.
Malaria vector control interventions, mainly LLINs and IRS have been associated with changes in sympatric Anopheles species composition in Uganda [10], and elsewhere in East Africa [11, 39, 43]. However, a shift in vector species composition and a decline in vector numbers has also been reported in absence of systematic vector control in north-east Tanzania [58, 59], which underscores the possibility of other causes for these changes such as epidemics of mosquito pathogens, improvements in housing, and changes in climate and land use. Inherent differences in malaria vector ecological characteristics [25], host preference [17], and exophagic and exophilic behavior [29, 60, 61], could be a threat to vector control especially for An. arabiensis [41]. An. arabiensis is considered to have a lower vectorial capacity than An. gambiae s.s. and An. funestus in parts of East Africa [38]. In other settings, however, where An. arabiensis is the principal vector, evidence of strong anthropophagic behavior and outdoor malaria transmission have been described [60]. The opportunistic feeding behavior of An. arabiensis, enables this species to avoid contact with LLINs and walls sprayed with insecticides which are applied indoors [27, 60, 62, 63]. Empirical evidence shows that highly anthropophilic malaria vectors such as An. gambiae s.s. and An. funestus s.s. are more responsive to vector control, particularly IRS programs [10, 39, 42]. A shift in biting patterns of An. funestus, however, including early morning biting [37, 64], and broad daytime biting [65], following introduction of LLINs has been documented.
Current vector control tools target highly anthropophagic and endophilic behavior [63]. However, there is growing evidence of outdoor biting especially in An. arabiensis [62, 66], which poses a threat to vector control. A similar study, within the study area in Nagongera found a high proportion of An. arabiensis biting outdoors [10]. In this study, the combination of LLIN and IRS had a lower impact on An. arabiensis vector density compared to An. gambiae s.s. and An. funestus, making it the predominant malaria vector post-intervention. The impact of this apparent increase in An. arabiensis vector density on malaria transmission remains unclear, however. A similar study in Nagongera showed limited malaria transmission despite relatively abundant An. arabiensis [10]. In Kenya, there was a decline in malaria transmission following increased LLIN coverage, coincident with the replacement of primary malaria vectors, An. gambiae s.s and An. funestus by An. arabiensis [39]. It is plausible that An. arabiensis may maintain residual transmission until the primary malaria vectors An. gambiae s.s. or An. funestus ‘bounce back’. This occurred in western Kenya, where previously dominant An. funestus was suppressed following long term use of LLINs, but then recovered, becoming the predominant vector again within a period of almost 20 years, possibly due to high levels of pyrethroid resistance in this species [67]. In a key example of vector control failure in Kwazulu Natal, previously ‘eliminated’ An. funestus was replaced by less endophilic An. arabiensis, but returned after almost 40 years, highly resistant to pyrethroids, and associated with a malaria resurgence in this area [68].
Outdoor biting behavior of An. arabiensis poses a challenge to malaria vector control. Larval source management with microbial larvicides combined with LLINs has been shown to be protective against malaria infections in rural Kenya [69], and there are several measures including treating cattle with insecticide [60], use of odor-baited traps dispensing spatial repellents [70], and transfluthrin-treated chairs and ribbons [71], which could be deployed as control interventions in the future. In Uganda, there is still an information gap regarding the zoophilic behavior of An. arabiensis and host choice in the presence of animals and humans. There is need for further research to assess the efficacy of interventions for controlling An. arabiensis.
This study had several limitations. First, we present findings from three sub-counties from only three districts. Thus, our study has limited geographical scope and the results may not be generalizable to other settings. We did, however, select sites representing markedly different transmission settings, and all mosquito collections were made from randomly selected households after enumeration. Second, only indoor mosquito collections were done using light traps. Therefore, these results are subject to inherent biases presented by the mosquito trapping method used. Third, species-specific sporozoite data were not collected, therefore implications to malaria control regarding residual transmission are implied.
Anopheles species composition may change from highly anthropophagic to less anthropophagic malaria vectors in response to vector control. However, the implications of these shifts in species composition on malaria transmission and control programmes are not well understood and require an in-depth examination of Anopheles species specific contribution to local malaria transmission. We found that LLINs and IRS effected vector densities and species composition differently in different settings. Measuring absolute numbers of mosquitoes to quantify the impact of interventions instead of relying on relative proportions is important in order to understand the full picture.
In areas of low- and moderate- malaria transmission large-scale deployment of LLINs resulted in substantial reductions in An. gambiae s.s. and An. funestus s.l. In the area of intense malaria transmission, the introduction of LLINs and IRS, resulted in the near collapse of these main vectors, with An. arabiensis becoming the principal vector, but at lower densities than prior to wide-scale vector control. Current vector control interventions are effective against malaria, but will not lead to elimination of the disease unless additional tools are included as supplementary interventions. Larval source management using chemical or microbial larvicides, combined with environmental management, could be used to improve control, especially in areas of high transmission. Development of interventions targeted at outdoor biting remains a priority.