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Abstract 

Code smells are indicators of potential symptoms or problems in software due to inefficient design or 

incomplete implementation. These problems can affect software quality in the long term. Code smell 

detection is fundamental to improving software quality and maintainability, reducing the risk of software 

failure, and helping to refactor the code. Data imbalance is the main challenge of machine learning (ML) 

techniques in detecting the code smells. Several prediction methods have been applied for code smells 

detection in our previous works. However, many of them show that, ML methods is not always suitable 

for code smells detection due to the problem of highly unbalanced data. To overcome these challenges, 

the objective of this study is to present a code smells detection method based on ML models with data 

balancing techniques to mitigate data unbalancing issues by taking a corpus of Java projects as 

experimental datasets. In our experiments, we have used Bidirectional Long Short-Term Memory (Bi-

LSTM) and Gated Recurrent Unit (GRU). The performance of these models has been evaluated based on 

accuracy, precision, recall, f-measure, receiver operating characteristic (ROC) curve. The results indicate 

that the use of data balancing techniques had a positive effect on the predictive accuracy of the models 

presented. 

Keywords: code smells, software metrics, deep learning (DL), Bi-LSTM, GRU, class imbalance, over-

sampling techniques. 

Introduction 

Software development and maintenance involve high costs, especially as systems become larger and more 

complex. Code smells indicate design or programming issues, which make it difficult to alter and maintain 

the software [1, 2, 3]. Code smells are one of the most accepted approaches to identify design problems in 

the source code and detection of code smells is a very important step for guiding the subsequent steps in 

the refactoring process. The quality of the software can be enhanced if code smells are identified in the 

class and method levels in the source code. Several studies examined the impact of code smells on software 

[4, 5, 6], and they showed their adverse effects on the quality of the software. Researchers have developed 

many techniques and conducted many experimental studies to detect code smells and obtained different 

results when applying the same case study [6]. Class imbalance is one of the most common problems for 

classification models during training and validation. There are many data sampling techniques that are 

used to deal with imbalanced class distributions such as oversampling and under-sampling techniques. The 



oversampling techniques supplements instances of the minority class to the dataset, while the under-

sampling techniques eliminate samples of the majority class for the goal of obtaining a balanced dataset. 

Random Oversampling and Tomek Links techniques are the most widely used sampling techniques to 

solve the class imbalance problem. Random over-sampling is a technique developed to increase the size 

of a training data set by making multiple copies of some minority classes, Tomek Links is an under-

sampling technique developed to randomly select samples with its k-nearest neighbours from the majority 

class that wants to be removed [7, 8]. DL is a special type of machine learning technique that allows 

computational models consisting of multiple processing layers to learn to represent data with multiple 

levels of abstraction. DL architecture has been widely used to solve many detections, classification, and 

prediction problems [9, 10, 11]. Software metrics are essential aids to measure and improve software 

quality, and these metrics are used to measure and characterize software engineering products. Metrics are 

considered to be independent variables, which means that they are used to perform the prediction (i.e., the 

predictors) [12, 13]. The main role of software metrics is to estimate and measure some characteristics of 

systems such as size, complexity, inheritance, encapsulation, etc. [14, 15]. Selected metrics are a large set 

of object-oriented metrics that are considered as independent variables as shown in Table 1. This paper 

aims to investigate ML/DL and sampling techniques to build a predictive model that can detect different 

types of code smells in source codes. Four different code smells were used to evaluate the capability of 

the proposed model based on various performance measures. This paper is organized as follows: first part 

contains a discussion on related work, and we present the background on the topics of code smells. After 

that, our research methodology is presented. The experimental results and discussion are followed by the 

conclusions. 

Table 1. Selected metrics in this study [4]. 

Size Complexity Cohesion Coupling Encapsulation Inheritance 

LOC CYCLO LCOM5 FANOUT LAA DIT 

LOCNAMM* WMC TCC ATFD NOAM NOI 

NOM WMCNAMM*  FDP NOPA NOC 

NOPK AMWNAMM*  RFC  NMO 

NOCS AMW  CBO  NIM 

NOMNAMM* MAXNESTING  CFNAMM*  NOII 

NOA WOC  CINT   

 CLNAMM  CDISP   

 NOP  MaMCL§   

 NOAV  MeMCL§   

 ATLD*  NMCS§   

 NOLV  CC   

   CM   

All metrics have been calculated with software tools, which analyse the source code of Java projects using 

the Eclipse JDT library. These tools are Design Features and Metrics for Java (DFMC4J), which have been 

designed to be integrated as a library into other projects. 

Related work 

There are many previous studies in the field of code smells detection based on different methodologies 

and strategies [12, 16, 31]. Hui Liu et al. [9] proposed a new DL-based approach to detecting code smells. 

The approach is evaluated based on four types of code smell: feature envy, long method, large class, and 

misplaced class. The experiment results show that the proposed approach significantly improves the state-

of-the-art. Tushar Sharma et al. [10] proposed Convolution Neural Networks (CNN) and Recurrent Neural 

Network (RNN) models for code smell detection. They performed the training and evaluation on C# 

sample codes. The experiment results show that, it is feasible to detect smells using DL methods and 

transfer-learning is possible to detect code smells with a performance similar to that of direct learning. 

Tushar Sharma et al. [12] proposed DL methods based on CNN and RNN for code smell detection. Models 

were evaluated based on C# and Java code samples and the results show that it is possible to detect smells 



using DL methods. Dong Kwan Kim [15] proposed a neural network model-based code smells detection 

system using a set of Java projects as an experimental dataset. The empirical results showed that the 

prediction outcomes are improved more when the model is highly trained with more datasets. Hadj-Kacem 

and Nadia. [16] proposed a hybrid approach based on Deep Autoencoder and artificial neural network 

algorithms to detect code smells. The approach was evaluated based on four code smells extracted from 

74 open-source systems. The experiment results show that the values of recall and precision measurements 

have demonstrated high accuracy results. Jaspreet Kaur and Satwinder Singh [17] suggested a neural 

network model based on object-oriented metrics for the detection of bad code smells. The model was 

trained and tested using different epochs to find twelve bad code smells. The experimental results showed 

the relationship between bad smells and object-oriented metrics. Hui Liu et al. [18] proposed a DL-based 

novel approach to detecting feature envy. The approach has been evaluated on open-source applications. 

The results show that the proposed approach significantly improves the state-of-the-art. Weiwei Xu and 

Xiaofang Zhang [19] proposed a novel DL approach based on abstract syntax trees (ASTs) to detect multi-

granularity code smells based on four types of smells. Experimental results show that this approach yields 

better results than the latest methods for detecting code smells with different granularities. Ananta Kumar 

Das et al. [20] proposed a DL-based approach to detect two code smells (Brain Class and Brain Method). 

The proposed system is evaluated based on thirty open-source Java projects from GitHub repositories. The 

experiments demonstrated high accuracy results for both the code smells. 

Background 

In this section, we present the background of the topics of code smells, Bidirectional LSTM, and Gated 

Recurrent units. 

Code smells  

Code smells are symptoms of code and design problems (Fowler and beck) [21]. Where code smells refer 

to any anomaly in the source code that shows a violation of basic design rules such as abstraction, hierarchy 

encapsulation, etc. Code smells represent design choices that may lead to a future degradation of 

maintainability, understanding ability, and changeability of a given part of the code [22, 23]. So, code 

smells can lead to shortcomings in software that make software hard to evolve and maintain and trigger 

refactoring of code [24]. As dependent variables choose code smells with high frequency that may have 

the greatest negative impact on the software quality, which can be recognized by some available detection 

tools [25, 26]. Code smells detection is the primary requirement to guide the subsequent steps in the 

refactoring process [16]. Detection rules are approaches used to detect code smells through a combination 

of different software metrics with predefined threshold values. Most of the current detectors need the 

specification of thresholds that allow them to distinguish smelly and non-smelly code [27]. Many 

approaches have been presented by the authors for uncovering the smells from the software systems. There 

is a different type of detection methodologies that differ from manual to visualization-based, semi-

automatic studies, automatic studies, empirical-based evaluation, and metrics-based detection of smells. 

Most techniques used to detection of code smells rely on heuristics and discriminate code artifacts affected 

(or not) by a certain type of smells through the application of detection rules which compare the values of 

metrics extracted from source code against some empirically identified thresholds. Researchers recently 

adopted DL to detect code smells to avoid thresholds and decrease the false positive rate in code smells 

detection tools [28, 29]. The following four code smells and detector tools were considered in this study 

as shown in Table 2. 

 Table 2. Code smells and detector tools are considered in the study based on class and method project 

level. 

Code smells  Description  

 

Affected 

entity 

Detectors 

God Class  Classes have many members and implement 

different behaviors. 

Class iPlasma, PMD 



Data Class  Classes contain only fields (data) and methods 

for accessing them. 

Class iPlasma, Fluid 

Tool, Antipattern 

Scanner 

Feature envy Sign of breach of the rule of grouping 

behavior with related data happens when a 

method is more interested in other properties 

of the classes than in the ones from its class. 

Method iPlasma, PMD, 

Marinescu. 

Long method Refers to the too-long method. It is classified 

as a blotter smell that affects method-level 

entities. 

Method iPlasma, Fluid Tool 

[4]. 

Table 2 shows the four code smells and detector tools are considered to identify the presence of code 

smells in the given. These smells are closely related to the class level smells and method level smells. 

Bidirectional LSTM 

The idea behind Bidirectional Recurrent Neural Networks (BI-RNNs) is to exploit spatial features to 

capture bidirectional temporal dependencies from historical data to overcome the limitations of traditional 

RNNs. All input information available in the past and future is used to train the BI-RNNs model as shown 

in Figure 1. The first step in BI-RNNs is to identify of information by a sigmoid layer called the forget 

gate layer that controls how much information flows from the inputs to the state and from the state to the 

outputs based on current inputs and previous outputs. Standard RNNs take sequences as inputs, and each 

step of the sequence refers to a certain moment [10, 12, 22]. For a certain moment t, the output 𝑜𝑡 not only 

depends on the current input 𝑥𝑡 but is also influenced by the output from the previous moment  𝑡 − 1. The 

following equations show the output of moment (t). 

 

ℎ𝑡   =  𝑓( 𝑈 ×  𝑥𝑡 + 𝑊 ×  ℎ𝑡−1 + 𝑏)                                                                                                                  (1) 

𝑜𝑡   =  𝑔( 𝑉 × ℎ𝑡 + 𝑐) 

Where U, V, and W denote the weights of the RNN, b and c denote the bias, f and g are the activation 

functions of the neurons. The cell state carries the information from the previous moments and will flow 

through the entire LSTM chain, which is the key that LSTM can have long-should be filtered from the 

previous moment, the output of forget gate can be formulated as the following equation: 

 

𝑓𝑡   =  σ( 𝑊𝑓 .  [ℎ𝑡−1 , 𝑥𝑡] + 𝑏𝑓)                                                                                                                             (2) 

Where σ denotes the activation function, 𝑊𝑓 and 𝑏𝑓 denote the weights and bias of the forget gate, 

respectively. The input gate determines what information should be kept from the current moment, and its 

output can be formulated as the following equation: 

 

𝑖𝑡   =  σ( 𝑊𝑖 .  [ℎ𝑡−1 , 𝑥𝑡] + 𝑏𝑖)                                                                                                                              (3) 

Where σ denotes the activation function, 𝑊𝑖 and 𝑏𝑖 denote the weights and bias of the input gate, 

respectively. With the information from forget gate and input gate, the cell state 𝐶𝑡−1  is updated through 

the following formula: 

Č𝑡   =  tanh( 𝑊𝑐  .  [ℎ𝑡−1 , 𝑥𝑡] + 𝑏𝑐)                                                                                                                       (4) 

Č𝑡   =  𝑓𝑡  × 𝐶𝑡−1 + 𝑖 ×  Č𝑡)                                                                                                

Č𝑡 is a candidate value that is going to be added into the cell state and 𝐶𝑡 is the current updated cell state. 

Finally, the output gate decides what information should be outputted according to the previous output and 

current cell state. 

 

𝑜𝑡   =  σ( 𝑊𝑜 .  [ℎ𝑡−1 , 𝑥𝑡 + 𝑏𝑜]                                                                                                                                 (5) 

ℎ𝑡   =  𝑜𝑡 × tanh(𝐶𝑡).   
                                                                  



 
 

Figure 1. Interacting layers of the repeating module in a Bi-LSTM. 

Gated Recurrent Unit 

With the increasing applications of Recurrent Neural Networks (RNN), it is found that there is a long-term 

dependencies problem. There are gradient vanishing and gradient explosion phenomena when learning 

sequence. This problem means RNN cannot guarantee the long-term nonlinear relationship. For this 

reason, many optimization theories have been introduced and many optimization algorithms have been 

derived such as long short-term memory networks (LSTM), GRU networks, Bi-LSTM, Echo State 

Networks, and independent RNN [12, 22]. GRU network is one of the optimized structures of the RNN. 

The goal of the GRU network is to solve the long-term dependence and gradient disappearance problem 

of RNN. A GRU is like LSTM with a forget gate, but it has fewer parameters than LSTM and uses an 

update gate and a reset gate as shown in figure 2. The update gate helps the model to determine how much 

of the past information (from previous time steps) needs to be passed along to the future and the reset gate 

helps the model to decide how much of the past information to forget [10]. The update gate model in the 

GRU neural network is calculated as shown in the equation below. 

z(t) =  σ(W(z). [h(t − 1), x(t)])                                                                                                                          (6) 

z(t) represents the update gate, h(t − 1) represents the output of the previous neuron, x(t) represents the 

input of the current neuron, W(z) represents the weight of the update gate, and σ represents the sigmoid 

function. The reset gate model in the GRU neural networks is calculated as shown in the equation below. 

r(t) =  σ(W(r). [h(t − 1), x(t)])                                                                                                                         (7)   

r(t) represents the reset gate, h(t − 1) represents the output of the previous neuron, x(t)represents the 

input of the current neuron, W(r)represents the weight of the reset gate, and σ represents the sigmoid 

function. The output value of the GRU hidden layer is shown in the equation below.                                                                                                                                                                                     

ȟ(t) = tanh(Wȟ. [rt ∗ h(t − 1), x(t)])                                                                                                                    (8) 

ȟ(t) represents the output value to be determined in this neuron, h(t − 1)represents the output of the 

previous neuron, x(t)represents the input of the current neuron, Wȟ represents the weight of the update 

gate, and tanh(.) represents the hyperbolic tangent function. rt is used to control how much memory needs 

to be retained. the hidden layer information of the last output as shown in the equation below. 

h(t) = (1 − z(t)) ∗ h(t − 1) + z(t) ∗  ȟ(t)                                                                                              (9) 



 
figure 2. Interacting layers of the repeating module in GRU. 

Proposed approach 

The main objective of this study is to perform an empirical study on the role of data balancing techniques 

in improving DL accuracy for the detection of code smells. The experiment used two DL models and 74 

open-source systems from Qualitas Corpus (QC) of systems. The empirical study follows the methodology 

shown in figure 3. This study aims to address the following research questions: 

RQ1: Do data balancing techniques improve ML techniques accuracy for detection of code smells? 

RQ2: Which data balancing technique is the most effective at improving the accuracy of ML techniques? 

 

 

Figure 3. Overview of the Proposed Model for code smells Detection 

Data modelling and collection 

Dataset selection is an important task in the problem of DL, and classification models perform better if the 

dataset is more relevant to the problem. The code smells detection model in this study uses a supervised 

learning task that relies on a large set of software metrics as independent variables. Having many systems 

or datasets is fundamental to training DL models and allowing generalization of the obtained results. To 

perform the analysis and experiment, the model used the proposed datasets in Arcelli Fontana et al [4]. 

The authors selected 74 open-source systems from Qualitas Corpus as shown in Table 3. The Qualitas 

Corpus (QC) of systems collected by Tempero et al [30]. The corpus used is composed of 111 systems 

written in Java, characterized by different sizes and belonging to different application domains. The reason 

for the selection is that the systems must be compliable to correctly compute the metrics values [4]. 

Table 3. Summary of projects characteristics [4]. 

Number of systems Lines of code 
 

Number of packages Number of classes 

74 6,785,568 3420 51,826 

 



Data Pre-processing and Feature Selection  
Pre-processing the collected data is one of the important stages before constructing the model. Not all data 

collected is directly used in the analysis process (train and build the model). Whatever input fits into the 

model will greatly impact the performance of the DL models and later further affect the output. Data pre-

processing is a group of techniques that are applied to the data to improve the quality of it before model 

building to remove the unwanted noise and outliers from the dataset, handle missing values, convert the 

type of feature. Feature Selection (FS) is one of the significant pre-processing steps and plays a key role 

in classification tasks. FS is the process of identifying and removing irrelevant and redundant features to 

improve the performance of the classifier [6, 11, 32]. 

 

Class Imbalance 

Class imbalance in classification models represents those situations, where the number of examples of one 

class are much smaller than another classes. Class imbalance problem makes classification models not 

effectively predict minority modules. Many techniques have been used to solve the problem of unbalanced 

data such as sampling techniques, bagging and boosting-based ensemble methods, and cost-sensitive 

learning techniques [7, 8]. In this study, the dataset chosen for the task of code smells detection is highly 

imbalanced. Each of the four datasets is composed of 420 instances (classes or methods), the two first 

datasets concern the code smells at the class level where the number of instances is 140 for God Class and 

Data Class. While at the method level, the number of instances for Feature Envy is 140, and the number 

of instances for Long Method is 140. To solve the problem of class imbalance, in this study we modified 

the original datasets, by modifying the distribution with the algorithms of Random Over-sampling and 

Tomek Links. Figure 4 shows the distribution of learning instances over original and balanced datasets. 

 

Figure 4. Distribution of learning instances over original and balanced datasets 

Models building and evaluation 

Different DL algorithms are used to build code smells prediction models and each algorithm has its 

benefits [12]. An empirical study has been conducted to demonstrate the effectiveness and accuracy of the 

proposed DL models for code smells detection. To get more accurate results, the proposed model has been 

trained and tested using a set of massive open-source Java projects. This study used a set of common 

performance measures based on the confusion matrixes, ROC Curve and Loos Function. The ROC curve 

is a graph that explains and shows the performance of classification models at all classification thresholds 

and plots based on two parameters, true positive rate (TPR) and false-positive rate (FPR). Loss functions 

are metrics used to compute the quantity of loss that a model should seek to minimize during training and 

quantify how good or bad the model is performing. The correlation matrix was used to describe the 

performance of a classification method using a set of test data. Each row of the matrix corresponds to a 

predicted class, whereas each column of the matrix corresponds to an actual class. The correlation matrix 

is a specific table that is used to measure the performance of the model. The correlation summarizes the 

results of the testing algorithm and presents a report of (1) True Positive Rate (TPR), (2) False Positive 



Rate (FPR), (3) True Negative Rate (TNR), and (4) False Negative Rate (FNR). Table 4 shows the 

correlation matrix. 

Table 4. Correlation matrix 

Predicted 

 
 

Actual 

No Yes 

No TN FP 

Yes FN TP 

Accuracy = (TP+TN) / (TP+FP+FN+TN)                                                                                             (10) 

Precision = TP / (TP+FP)                                                                                                                       (11) 

Recall = TP / (TP + FN)                                                                                                                         (12) 

F-Measure = (2 * Recall * Precision) / (Recall + Precision)                                                                 (13) 

Experimental Results and Discussion 
In this section, we evaluate the effectiveness and efficiency of our proposed DL models. We experimented 

with our method by selecting two suitable DL algorithms and testing them on the generated datasets based 

on four code smells. The experimental environment was based on Python environment. 
 

Table 5. Evaluation results for the original datasets 

Bi-LSTM Model 

 

Datasets 

 

Performance Measures 

Accuracy Precision Recall F- measure ROC area Loos 

God Class 0.98 0.97 0.97 0.97 0.99 0.022 

Data Class 0.96 0.95 0.91 0.93 0.97 0.032 

Feature envy 0.93 0.84 0.96 0.90 0.96 0.067 

Long method 0.98 0.96 0.96 0.96 0.99 0.023 

GRU Model 

 

Datasets 

 

Performance Measures 

Accuracy Precision Recall F- measure ROC area Loos 

God Class 0.94 1.00 0.86 0.93 0.97 0.059 

Data Class 0.98 0.92 1.00 0.96 0.99 0.024 

Feature envy 0.92 0.83 0.93 0.88 0.94 0.074 

Long method 0.96 0.93 0.96 0.95 0.98 0.033 

 

Table 6. Evaluation results for the balanced datasets - Random Oversampling 

Bi-LSTM Model 

 

Datasets  

 

Performance Measures 

Accuracy Precision Recall F- measure ROC area Loos 

God Class 0.96 0.95 0.98 0.97 0.97 0.032 

Data Class 1.00 1.00 1.00 1.00 1.00 0.001 

Feature envy 0.98 0.97 1.00 0.98 0.98 0.018 

Long method 1.00 1.00 1.00 1.00 1.00 0.001 

GRU Model 

 

Datasets  

 

Performance Measures 

Accuracy Precision Recall F- measure ROC area Loos 

God Class 0.96 0.97 0.97 0.97 0.98 0.036 



Data Class 0.99 0.98 1.00 0.99 1.00 0.015 

Feature envy 0.97 0.98 0.97 0.98 0.96 0.034 

Long method 0.99 0.98 1.00 0.99 0.99 0.010 

 

Table 7. Evaluation results for the balanced datasets - Tomek links 

Bi-LSTM Model 

 

Datasets  

 

Performance Measures 

Accuracy Precision Recall F- measure ROC area Loos 

God Class 0.96 1.00 0.87 0.93 0.99 0.030 

Data Class 0.96 0.92 0.96 0.94 0.98 0.041 

Feature envy 0.98 0.97 0.97 0.97 0.98 0.026 

Long method 0.98 0.94 1.00 0.97 0.98 0.024 

GRU Model 

 

Datasets  

 

Performance Measures 

Accuracy Precision Recall F- measure ROC area Loos 

God Class 0.96 0.95 0.91 0.93 0.98 0.039 

Data Class 0.99 0.96 1.00 0.98 0.99 0.019 

Feature envy 0.96 0.96 0.93 0.95 0.98 0.041 

Long method 0.98 0.94 1.00 0.97 0.98 0.022 

 

Results of RQ1 

RQ1 Do data balancing techniques improve ML techniques accuracy for detection of code smells? 

Table 5 presents the results of our Bi-LSTM and GRU Models on the original datasets in terms of accuracy, 

precision, recall, F-Measure, ROC area, and Loos. We notice that the accuracy values of the Bi-LSTM 

model vary from 0.93 to 0.98, the precision values range from 0.84 to 0.97, the recall values range from 

0.91 to 0.97, the F-Measure values vary from 0.90 to 0.97, the ROC area values range from 0.96 to 0.99, 

and the Loos values range from 0.022 to 0.067 across all datasets. The accuracy values of the GRU model 

vary from 0.92 to 0.98, the precision values range from 0.83 to 1.00, the recall values range from 0.86 to 

1.00, the F-Measure values vary from 0.88 to 0.96, the ROC area values range from 0.94 to 0.99, and the 

Loos values range from 0.024 to 0.074 across all datasets. 

Table 6 presents the results of our Bi-LSTM and GRU Models on the balanced datasets using random 

oversampling in terms of accuracy, precision, recall, F-Measure, ROC area, and Loos. We notice that the 

accuracy values of the Bi-LSTM model vary from 0.96 to 1.00, the precision values range from 0.95 to 

1.00, the recall values range from 0.98 to 1.00, the F-Measure values vary from 0.97 to 1.00, the ROC area 

values range from 0.97 to 1.00, and the Loos values range from 0.001 to 0.032 across all datasets. The 

accuracy values of the GRU model vary from 0.96 to 0.99, the precision values range from 0.97 to 0.98, 

the recall values range from 0.97 to 1.00, the F-Measure values vary from 0.97 to 0.99, the ROC area 

values range from 0.96 to 1.00, and the Loos values range from 0.010 to 0.036 across all datasets. 

Table 7 presents the results of our Bi-LSTM and GRU Models on the balanced datasets using Tomek links 

in terms of accuracy, precision, recall, F-Measure, ROC area, and Loos. We notice that the accuracy values 

of the Bi-LSTM model vary from 0.96 to 0.98, the precision values range from 0.92 to 1.00, the recall 

values range from 0.87 to 1.00, the F-Measure values vary from 0.93 to 0.97, the ROC area values range 

from 0.98 to 0.99, and the Loos values range from 0.024 to 0.041 across all datasets. The accuracy values 

of the GRU model vary from 0.96 to 0.99, the precision values range from 0.94 to 0.96, the recall values 

range from 0.91 to 1.00, the F-Measure values vary from 0.93 to 0.98, the ROC area values range from 

0.98 to 0.99, and the Loos values range from 0.019 to 0.041 across all datasets. 



For each code smell, the best models obtain the following performance on the original datasets: Bi-LSTM 

model scores 0.98 % of accuracy on God Class and Long method. GRU model scores 0.99 % of accuracy 

on Data Class. 

For each code smell, the best models obtain the following performance on the balanced datasets (using 

Random Oversampling Technique): Bi-LSTM model scores 1.00 % of accuracy on Data Class and Long 

method. GRU model scores 0.99 % of accuracy on the Data Class and Long method. 

For each code smell, the best models obtain the following performance on the balanced datasets (using 

Tomek links Technique): Bi-LSTM model scores 0.98 % of accuracy on Feature envy and Long method. 

GRU model scores 0.99 % of accuracy on Data Class. 

To answer research question RQ1, we compared the results obtained by the proposed models on the 

original datasets with results obtained by the proposed models on the balanced datasets, we note that both 

models got good scores on all original and balanced datasets but the results obtained by the proposed 

models on the balanced datasets are better, which indicated that the proposed models performed well and 

data balancing techniques play an important role in improving the accuracy of DL for detection of code 

smells. 

 

 

Figure 5. Accuracy of Models on Balanced Datasets 

 

 

Figure 6. Boxplots representing performance measures obtained by models on balanced datasets 

 



 

Figure 7. Training and Validation Accuracy on Balanced Datasets using Bi-LSTM Model-Random 

Oversampling 

 

 

Figure 8. Training and Validation Loss on Balanced Datasets using Bi-LSTM Model-Random 

Oversampling 

 

 

Figure 9. Training and Validation Accuracy on Balanced Datasets using Bi-LSTM Model- Tomek links 



 

Figure 10. Training and Validation Loss on Balanced Datasets using Bi-LSTM Model- Tomek links 

 

 

Figure 11. Training and Validation Accuracy on Balanced Datasets using GRU Model-Random 

Oversampling 

 

 

Figure 12. Training and Validation Loss on Balanced Datasets using GRU Model-Random 

Oversampling 



 

Figure 13. Training and Validation Accuracy on Balanced Datasets using GRU Model- Tomek links 

 

 

Figure 14. Training and Validation Loss on Balanced Datasets using GRU Model - Tomek links 

 

 

Figure 15. ROC curves for balanced datasets - Bi-LSTM Model-Random Oversampling 



 

Figure 16. ROC curves for balanced datasets - Bi-LSTM Model- Tomek links 

 

 

Figure 17. ROC curves for balanced datasets - GRU Model-Random Oversampling 

 

 

Figure 18. ROC curves for balanced datasets - GRU Model- Tomek links 



Results of RQ2 

 

RQ2 Which data balancing technique is the most effective at improving the accuracy of ML 

techniques? 

Figure 5 shows the accuracy of models on all balanced datasets. Figure 6 shows the Box plots for the 

models comparing the performance measures (accuracy, precision, recall, and f-measure) of both the Bi-

LSTM and GRU. Figures 7 to 14 below show the training and validation accuracy and training and 

validation loss of the models on all balanced datasets. Figures 15 to 18 below show the ROC curves of the 

models on all balanced datasets. 

To answer research question RQ2, we compared the results obtained by the proposed models on the 

balanced datasets using two data balancing techniques namely Random Oversampling and Tomek links, 

we generally note that the Random Oversampling technique is better than the Tomek links technique. 

 

Conclusion 

Code smells in the software systems are indicators of problems that can negatively affect software quality 

and make it hard to maintain, reuse, and expand. This study presented a methodology based on DL and 

software metrics to detect code smells from software projects, considering four different types of code 

smells over a dataset of 6,785,568 lines of code comprising 74 open-source software systems. We 

conducted a set of experiments using two DL models on Java projects in different application domains and 

evaluated smells detection accuracy using different performance measures. The experimental result 

showed that the balancing techniques can improve the performance of DL techniques for code smells 

detection. 
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