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Abstract

Background: Non-destructive structural health evaluation of thin-walled com-
ponents on the basis of Lamb wave propagation is a widely used approach. How-
ever, most current methods to measure the dispersive behavior of Lamb waves are
time based approaches and are not easily capable of high automation to measure
influences on the wave propagation along a wide range of frequencies. Objective:
Develop and validate a highly automatable method to measure Lamb wave disper-
sion diagrams with high accuracy. To be able to broadband examinate influences,
which have only a small effect on the wave propagation. Methods: The use of
frequency based approaches like the 2d Fourier transform is a known method to
measure Lamb waves. This investigation tries to bring together the advantage of
the high automation as well as the high accuracy this method offers, by taking
into account a non-uniform distribution of the measurement points and using par-
ticularly suitable excitation signals for high accuracy. Results: The here stated
method is capable of automatically creating dispersion diagrams for Lamb waves
with high accuracy, automation and reproducibility. The experimental results are
compared with analytical results and are in good agreement. Conclusions: This
investigation shows 2d Fourier transform as a method to create dispersion dia-
grams of Lamb waves is an accurate and especially highly automatable approach

with high accuracy.

Keywords Lamb waves - dispersion curves - 2d Fourier transform - laser

vibrometry
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1 Introduction

The use of Lamb waves to monitor thin-walled components is a well-known ap-
proach in today’s Structural Health Monitoring (SHM) [6,11,16]. Previous research
and applications show that Lamb waves are well suited for this application, but
the presence of multimodal waves and their dispersive behavior lead to complex
descriptions and elaborate measurements [1,7,10,15,16,20,22]. The multimodal
behavior is characterized by the fact that at any given frequency at least two wave
modes coexist and a corresponding number of wave packets is contained in sensor
signals. The dispersive property of the waves leads to a frequency-dependent phase

velocity [6,7].

The generation of Lamb waves by a piezoelectric wafer and their propagation
in an aluminum plate are illustrated in Fig. 1. The measurements are performed
with a full-field laser vibrometer, see [11,13]. The red and green circles represent
the out-of-plane velocities of the material points on the surface and the intensity of
the color is a measure of the velocity amplitude. Fig. 1 (a) shows the velocity field
immediately after wave excitation by a sinusoidal burst signal on the piezoelectric
wafer. Fig.1(b) shows the propagating Lamb waves at a later time. Here, two
wave modes become visible, the symmetric So mode on the outside and the anti-
symmetric Ap mode in the interior, indicating the multimodal behavior mentioned
above. It is also clear that the symmetric Ag wave propagates more slowly than
the antisymmetric So wave, so that both wave packets separate in the observation
period from the left to the right figure due to different velocities. The right figure
further shows that the wavelength of the Sp wave is larger than that of the Ag

wave.
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(b)

Fig. 1: Symmetric and antisymmetric Lamb waves propagating in an aluminum
plate after excitation by a piezoelectric waver. Velocity field immediately after
excitation (left) and during further progressing wave propagation (right).

It becomes evident that appropriate methods are needed to capture and assess
multimodal behavior. Both time-based and frequency-based methods are avail-
able. Considering the occurrence of multiple modes, the use of a frequency-based
approach is advantageous over a time-based approach, since the latter can only
insufficiently separate the modes if they overlap locally at a certain point in time.
With frequency-based approaches, on the other hand, these problems do not arise

[5,23].

Several frequency-based methods can be found in the literature e.g. [2,8,9,
14,15,18,21]. Lamb waves exhibit harmonic behavior in both the time and spa-
tial domains, so it is advantageous to apply methods that exploit this property.
A frequency-based approach that can be considered for this reason is the two-
dimensional Fourier transform (2d-FT) [2,9,21]. This method not only provides
accurate results, but also allows for a high degree of automation. Therefore, the
propagation behavior can be determined over a wide frequency range with mini-

mum effort.
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Unlike most other publications that use 2d-FT to evaluate measurements of
Lamb waves, the method used here is designed to increase the accuracy of this
measurement as much as possible in order to detect even very small deviations
resulting from external influences. For these purposes, a multifrequency excitation
signal, which is to be considered long in time for this context, and an automated
peak search algorithm are used. With these adaptations, the results presented
here show that this method is capable of producing whole spectra of dispersion

diagrams fully automatically and with high accuracy.

The remainder of this presentation is structured as follows: In Sect. 2 a short
review of the theoretical background is given before in Sect. 3 the experimental
procedure is described. Sect. 4 then presents the measurement results and evaluates
them on the basis of comparisons with analytical data and with respect to their
reproducibility. In Sect. 5 a short summary is given and an outlook on future work

is presented.

2 Background
2.1 Lamb Waves in Isotropic Solids

The starting point for the analytical solution is the momentum balance for isotropic
solids, with neglect of damping. By assuming a linear elastic constitutive law, the
stresses are eliminated and the Lamé-Navier differential equation [7] is obtained
as

2
(A + p) grad (div u) + p div (grad u) + pb = p ZT;I (1)
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in which the displacement field u = (u1, ug, ug)T serves as independent variable.
Moreover, A and p are the Lamé constants, p is the density, b the body force density
and t denotes the time. For the solution of this differential equation, boundary
conditions have to be taken into account. Stress-free upper and lower surfaces are
considered here, since wave propagation in thin plates are under investigation.
Incorporating the corresponding equations one finally ends up with the Rayleigh-

Lamb wave equations [7]

tan(qd) _ | 4k>pq (£1) )
tan(pd) | (¢2 — k2)?
with p and ¢ being defined as
2 2
P R ad PR 3)

[A+2u ! \/E
p p

Here, w stands for the circular frequency and k for the circular wavenumber. In the
case of an isotropic plate, the main physical effects can be studied on a 2D-model
in the plane strain state. This model is also motivated by the accompanying ex-
perimental studies. Thus, the multimodal propagating Lamb waves can be divided
into symmetric and antisymmetric wave types with respect to the plate centerline,
see Fig. 2. The nontrivial solutions of Eq. (2) lead to the dispersion diagram, which
is shown for an aluminum plate in Fig. 3. Here, the wavenumbers 7, multiplied
by the plate thickness d, of the first symmetric (Sp) and the first antisymmetric
(Ap) modes are shown as a function of the product of excitation frequency f and

plate thickness d. The dispersive character of the Lamb waves is clearly visible. It
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Fig. 2: Sketch of an antisymmetric (a) and symmetric (b) wave mode in a 2D
plate model
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Fig. 3: Analytically computed dispersion diagram for an aluminum plate with the
first symmetric (So) and the first antisymmetric (Ag) mode

should be noted that higher symmetric and antisymmetric modes are generated

at higher frequencies.
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With reference to the coordinate system in Fig. 2, the displacements of the

symmetric and antisymmetric waves are computed according to [7]

u$™" = [ik Ay sin (px3) + ¢Ba sin (qz3)] glkzi—wt)
ud™ = [pA; cos (px3) + ik Bz cos (qus)] e" ko1 )
(4)
uSY™ = [ik Az cos (pz3) — qBi cos (quz)] e'Frrwh
uf?™ = [—pAs sin (pz3) + ik By sin (qz3)] e’ 1w

The displacement fields show that both the dependence on the coordinate z; and
the dependence on the time ¢ are represented by a composition of sine and cosine
functions. This will be exploited in the application of the Fourier transform in the

further course.

2.2 2D Fourier Transform

Multimodal Lamb wave generation already occurs in case of monofrequency excita-
tion, see Fig. 3, and is even more severe with the use of multifrequency excitations,
see Sect. 3.2. For this reason, time-based measurement techniques are only suit-
able to a limited extent for the observation of Lamb waves, since a high effort is
necessary to isolate the individual modes. A discrete 2d-FT, on the other hand,
is able to select modes even for multimodal and multifrequency measurements, so

that the data are analyzed in this way.

Egs.(4) make it clear that the mathematical description of the symmetric and
antisymmetric wave modes is harmonic both in the spatial coordinate x; and in

time t. To transfer these dependencies in terms of space and time into the frequency
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domains, the 2d-FT is used. According to [4], one obtains

F(f,z?):/ /u(t,xl)e*’%ﬂeﬂmldt dzy . (5)

—0o0 —00

If one uses 2d-FT for experimental investigation of wave propagation, one captures
discrete time signals at predetermined discrete locations, so that Eq. (5) cannot

be applied directly. Instead, the 2d discrete Fourier transform is then applied:

F(f,7) = Zn: i (u(t,xl)e*&"ft) 2 (6)

x1=01t=0

From the discrete time signals which is acquired at predetermined spatial points,
first the temporal information is transferred into the frequency domain and then
the spatial information of the transformed signal is transferred into the wavenum-
ber domain. As a result of this method, a two-dimensional matrix F with depen-
dencies of the two frequency domains is obtained. This matrix assigns a unique
combination of frequency f and wavenumber 7 to each occurring mode and thus

enables the separation of the individual modes.

2.3 Accuracy and Measurement Range for 2d-DFT Based Measurements

One of the main concerns of the investigations carried out is to achieve a high de-
gree of accuracy in the measurements. Therefore, based on Eq. (6), the parameters
which have an influence on the use of Fourier transforms will be discussed in the
following. Likewise, it will be discussed which conditions must be given in order

to capture a certain measurement range.
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For the accuracy of the measurement, the number of sampled wave periods
along the measurement distance is the crucial parameter. In Eq. (6) this influence is
reflected by the parameters n and m. It influences the accuracy of the measurement
in two ways. On the one hand, it determines the accuracy of the resolution of the
FT and on the other hand, the measurement on several wave periods compensates
for errors caused by disturbances on individual wave periods. A high number of
scannable wave periods requires on the one hand a measurement distance as long
as possible, on the other hand a long duration of the measurement. The duration of
the measurement is easy to adjust and only affects the size of the resulting data set.
The available measurement distance on the specimen, on the other hand, is usually
predetermined by the specimen and the measuring system and can therefore only
be changed to a limited extent. In Sect.4.2, the influence of these parameters is

illustrated using the example of a performed measurement.

The decisive parameter for the possible measurement range is the sampling
frequency of the measurement. This parameter is represented in the 2d Fourier
transform used here on the one hand by the temporal sampling frequency and on
the other hand by the spatial distance of the measuring points. These parameters
are only dependent on the measuring system used and the amount of data to be
processed and therefore do not place any requirements on the geometry of the

specimen.
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3 Experimental Procedure

3.1 Specimen and Data Aquisition

For the experimental investigations, an aluminum plate (AIMg3) with dimensions
500 x 400 x 2 mm?® is used as a specimen, of which the material properties were
determined in separate preliminary tests and are given in Table 1. A rectangular
piezoelectric wafer with dimensions 5 x 30 mm? and a thickness of 0.2 mm is used
to excite the Lamb waves. It is attached to the specimen with epoxy glue and is
placed in such a way that the measurements are affected as little as possible by
edge reflections, see Figure 4.

The data is acquired using a Polytec PSV-500 laser Doppler vibrometer with
a sampling frequency of 3.125 MHz, which results in a maximum detectable signal
frequency of 1.5625 MHz, cf. [19]. The excited Lamb waves are then measured on
the surface of the specimen along a straight line prepared with a reflective foil,
see Fig. 4. This path consists of 430 points with an approximate spacing of 0.66
mm. According to the Nyquist-Shannon sampling theorem [19], this leads to a
maximum detectable wavenumber  of about 763 m~'. It should be mentioned
here that the observation points are not exactly equidistant, which is due to small
deviations in the positioning of the laser. A possible influence on the results is
compensated by the spatial non-uniformity of the 2d-FT used, see Section 4.5.

As stated in [12,17], the laser vibrometer measures the velocity component
in the direction of the laser beam at specified points on the plate surface. Since
the laser beam is essentially perpendicular to the plate surface, the out-of-plane
component of the velocity is almost exclusively recorded. This component is sig-

nificantly larger for the antisymmetric wave than for the symmetric one, so that
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Table 1: Specifications of the aluminium specimen

Young’s modulus 64.6 GPa

Poisson’s ratio 0.33
density 2.7 g/cm®
400 mm
A A
g
g
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= actuator
Y
A
g
g g
o g
& S
\ B
path with
observation
L points
Y

Fig. 4: Sketch of the specimen, the location of the actuator and the path with

observation points

the accuracy of the measurements is different for the two modes. This aspect is

discussed in Section 4.2 in the context of the experimental investigations.

3.2 Excitation Signal

When selecting an excitation signal, it is advantageous that the 2d-FT does not
require special reference points in time or space to evaluate a wave packet. Another
advantage is that the 2d-FT is not very sensitive to interference from reflections.

So, a multi-frequency excitation signal is used to generate the Lamb waves, see
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Fig. 5(a). It consists of superimposed sinusoids with a subsequently applied Hann
window, [3].

This signal was chosen from two points of view. First, the signal has a duration
of 80 ms and can therefore be considered as long in the context of this application.
Thus, as described in Sect 2.3, a high accuracy in the temporal frequency domain
is achieved. Second, as shown in the spectrum of the signal in Fig. 5(b) a signal
shows clearly separable frequency maxima, which are in 10 kHz distance to one
another. This separation is necessary to ensure a high accuracy and reliability of
the peak search algorithm, which is used to evaluate the results of the 2d-FT.
Table 2 summarizes the data of the excitation signal and additionally shows the
data for the spatial and temporal sampling of the measurements.

The excitation signal used here differs significantly from those frequently used
in investigations on Lamb waves. These are often very short narrowband sine
burst signals or very broadband pulse excitations. The advantage of the signal
chosen here is that both a broadband excitation occurs as in pulse excitation,
but a good separation of the frequency components is possible. In addition, the
accuracy of the temporal frequency in the evaluation is significantly better than

with conventionally used excitation signals due to the temporaly long signal.

3.3 2D-FT and Peak Search Algorithm

After measuring the velocities along the measurement path with the laser vibrom-
eter, the data is transferred to the frequency domains using the 2d-FT. The result
is a matrix with amplitude values representing the relationship between the two

frequency domains. Exemplary this is shown in Fig. 6 in which an evaluation of a
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Fig. 5: Excitation signal: (a) time domain (b) frequency domain
Table 2: Specifications excitation and sampling
Excitation
spectrum 1:1:500 kHz
excitation time 80 ms
sampling frequency 10 MHz
Spatial Sampling
measuring length 0.2818 m
number of measurement points 430
distance of measurement points 0.66 mm
maximum detectable wavenumber 763 m™?!
Temporal Sampling
measuring time 80 ms
number of measurement points 250000
sampling frequency 3.125 MHz
maximum detectable frequency 1.5625 MHz




Experimental Lamb Waves Using 2D-FT 15

measurement with an excitation signal including the frequencies from 20 kHz mm
to 1 MHz mm in 20 kHz mm steps is shown. It can be seen that clearly recognizable
maxima occur at the excited frequencies. Note that for each temporal frequency
two significant maxima occur. They represent the first two Lamb waves modes
Ap and Sp propagating in a straight direction away from the piezoelectric actua-
tor. When considering the maxima, an expected difficulty in the later evaluation
becomes clear, namely that the out-of-plane amplitudes of the Ag wave are signif-
icantly larger than those of the Sp waves. The effects of this difference is discussed

in more detail in Sect. 4.2.

In the next step, these maxima are detected automatically with a 2d peak
search algorithm and the results of the individual measurements are combined to
form the dispersion curves. To save computing time and resources, the evaluation
is performed sequentially in several steps so that the accuracy of the results can be
increased successively. The first steps take into account the full spectra, but with
a low resolution. After the first peak search has been performed, the spectrum is
concentrated on these peaks so that the resolution and thus the accuracy can be
increased. Splitting the algorithm into several steps has proven worth in execution
because it leads to a better use of resources than computing the whole spectra

with high resolution in one step.

At this point, it is additionally mentioned that this process only considers
waves moving away from the wafer, i.e. only positive wavenumbers are evaluated.
The method is also capable of detecting negative wavenumbers but since this is
not necessary for the results presented, only positive wavenumbers are included to

increase computational efficiency.
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Fig. 6: Dispersion diagram as the 2d-FT solution

4 Results and Discussion

4.1 Experimental Results

Based on the experimental procedure presented in Sect. 3, the dispersive behavior
of the guided waves in the aluminum plate is measured and analyzed. To find a
solution for a spectrum from 2 kHz mm to 1 MHz mm with steps of 2 kHz mm, ten
measurements were performed using the excitation signals specified in Sect. 3.2.
The results were evaluated as described in Sect. 3.3. Figure 7 (a) and (c) show
the resulting wavenumber frequency relations for the first antisymmetric (Ag) and
first symmetric (So) mode. In the following, these results are evaluated on the

basis of various criteria.
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Fig. 7: Experimental data for the aluminium specimen (a) and (c) dispersion
diagrams for Ag and So, (c) and (d) differences in wavenumber to prior frequency

Ap and Sp

4.2 Evaluability of Experimental Results

As described in Sect. 2.3, there are not only parameters that define the maxi-
mum measurable frequency and wavenumber, but there are also quantities that
influence the accuracy and evaluability of the measurements. One such quantity is
the number of wave periods on the measurement distance. In order to determine
an evaluable measurement range, the measurement results are examined for this

quantities in the following.

Consideration of the temporal frequency makes it clear that the temporal ac-
curacy is determined only by the duration of the measurement and the excitation

signal. Since a long duration excitation signal is used, the accuracy is very high.
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Therefore, the peak search algorithm is able to search the data with an accuracy
of £1 Hz with respect to the expected temporal frequency. As a result, there is
almost no loss of accuracy in the results due to frequency deviations.

The accuracy in the wavenumber range, on the other hand, is defined by the
length of the measurement distance on the specimen. This length is 0.2818 m and
is limited by the specifications of the specimen. Therefore, large inaccuracies are
to be expected in the range of small wavenumbers. This is confirmed in Figs. 7
(a) and (c). For small wavenumbers, one can see large scattering in the results of
the peak search algorithm. This is particularly observable in the Sp-mode, since
for this mode the wavenumber for a larger part of the considered spectrum is
significantly smaller than in the antisymmetric mode. As shown in Fig. 7 (b) and
(d), this effect can be seen even more clearly if one examines the differences in the
wavenumber to the next frequency step in each case. In these diagrams, a clear
dependence on the detectable wavenumber can be seen.

Since the length of the specimen determines the measurement distance, it is
reasonable to specify a minimum wavenumber for the measurements. This is illus-
trated by the colored lines along the minimum detectable wavenumbers in Figs. 7
(a) and (c) or frequencies in Fig. 7 (b) and (d).The red line and green line indicate
that at least five and twenty sinusoidal sweeps, respectively, were recorded along
the measurement distance. In the following observations, the data will be limited
to measurements with at least five sinusoidal sweeps in space. This results in a
minimum evaluated frequency of 36 kHz mm for Ag and 188 kHz mm for Sp.

When taking measurements and evaluating the results, it must also be taken
into account that the laser vibrometer mainly measures the out-of-plane compo-

nent of the velocity at the surface. These components are significantly larger for
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the Ap mode than for the Sp mode. Reflections of the waves occur during the ex-
periments and influence the measurements. The magnitude of these perturbations
is significantly larger for the small amplitudes of the Sp modes than for the larger

Ap modes, therefore the results for this mode are more influenced.

4.3 Reproducability

In the following, the reproducibility of the measurements is considered in more
detail. For this purpose, the measurements of the wavenumber frequency pairs, see
Sect. 4.1, are repeated and evaluated fifty times. Fig.8 shows the corresponding
95 % confidence intervals and standard deviations as percentages of the respective
measured value. In order to be able to present as much data as possible but also
make sure that the displayed range is not too strongly influenced by individual
outliers, the minimal displayed wavenumber is set to 75 mm/m. This leads to a
minimum frequency-thickness value of 48 kHz mm for the Ap and 388 kHz mm for
the Sp mode. In addition, outliers in the Sp mode were excluded at frequency-
thickness values of 394 kHz mm and 718 kHz mm.

It can be seen that for both the Ap- and the So-mode, the values for the
standard deviation and the confidence interval are very small and thus the mea-
surements show good reproducibility. Furthermore, it is visible, that the relative

measurement inaccuracies decrease with increasing wavenumbers, as expected.

4.4 Comparison to Analytic Solutions

For the evaluation of the quality of the measurement, the measured wavenumber-

thickness values are now compared with a linear analytical solution for the prop-
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Fig. 8: Relative values for standard deviation (SD, red) and confidence interval
(CI, green and blue) based on standard deviation for (a) Ag (b) So

agation behavior of Lamb waves. Fig. 9 (a) and (c) show the difference between
the measurement and the analytical solution for the wavenumber-thickness values
as a function of frequency. Fig. 9 (b) and (d) show the relative difference based on
the analytical solution. The data show reasonably good accuracy, with the scatter
decreasing with increasing frequency respectively wavenumber. The measurement
of the antisymmetric mode has high accuracy and shows almost no outliers. Only
a larger scatter at low wavenumbers can be seen. The So mode has a significantly
higher number of outliers over a larger frequency range. This is due on the one
hand to the less steep increase of the wavenumber with frequency and on the
other hand to the possible reflections of the Ag mode. Taking this into account,

the measurement is still in very good agreement with the analytical solution.
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Fig. 9: Differences between experimental and analytic data (a) differences in
wavenumber-thickness value Ap, (b) relative differences in wavenumber-thickness
value to analytic values Ay, (c) differences in wavenumber-thickness value So, (d)
relative differences in wavenumber-thickness value to analytic value So

4.5 Non Uniformity Spacing of Aquisition Points

As already mentioned in Sect. 3.1, the calculation of the 2d-FT uses a method
variant which allows non-equidistant measurement points in the spatial domain.
This is necessary because the laser cannot be positioned on exactly equidistant
observation points. In the following, the errors, which result from the assumption
of uniformly distributed measuring points resp. a uniform DFT, are considered
in more detail. For comparison, an equal distance between the individual mea-
surement points is assumed, i.e., the start and end points of the measurement
distance are used and the distance is divided equally over the number of measure-

ment points. The data were obtained in the frequency ranges defined in Sect. 4.2.
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Furthermore, outliers were excluded from the analysis as they do not provide any
information about the difference between the results of the different measurement

point distributions.

Fig. 10 (a) shows the difference in the location of the measurement points
over the measurement distance compared to equidistant spacing. Fig. 10 (b), on
the other hand, depicts the difference in spacing between successive measurement
points. The measurement data are now re-evaluated assuming an equal distribu-
tion of measurement points and compared with the results of the non-equodistant
solution. Thus, the errors resulting from not considering the uneven distribution
can be analyzed. Fig. 10 (c) represents the difference in wavenumbers over the de-
tected wavenumbers. It can be seen that not taking into account the non-uniform
spacing leads to an error in the evaluation. As expected, this error depends on the

wavenumber to be evaluated.

In order to be able to make a statement about the improvement of the mea-
suring accuracy, Fig. 10 (d) shows the relative wavenumbers with respect to the
data of the analytical solution for both modes and for the equidistant (index U)
as well as the non-equidistant (index NU) evaluations. It becomes visible that the
use of the 2d-FT for non-equidistant measurement points increases the accuracy
for both modes. The obtained improvement of the data is in the range of 0.5 %.
Comparing this value with the deviations of the measurement to the analytical
solutions shows that the deviations from the analytical solution are also in the low
single-digit percentage range. Thus it can be stated that the use of the non-uniform
FT for the spatial domain represents a significant improvement of the measuring

method.
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Fig. 10: (a) differences between non-equidistant and equidistant location of the
measurement points, (b) spacing between consecutive measurement points, (c)
differences in wavenumber between non-equidistant and equidistant data, (d) rel-
ative differences in wavenumber between measurements and analytic results for
non-equidistant (NU) and equidistant (U) data.

Considering that the distances of the measuring points do not show large differ-

ences in the measurements performed, this effect can become especially important

for those measurements where there is a more non-uniform spacing of the mea-

suring points due to the measuring system or the specification of the specimen.

5 Conclusion

In this work, the potential offered by the 2d Fourier transform as a tool for mea-

suring the dispersive properties of Lamb waves is demonstrated. It is worked out
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(b)

Fig. 11: Interaction of symmetric Lamb waves with artificial damage (lower left)
at two time points.

that the proposed method can be used to measure the velocity of Lamb waves in
a time-saving manner, especially when the velocities of different wave modes in a
frequency range need to be determined. In comparison to an analytical solution,
it was also shown that a high measurement accuracy is achieved.

Since Lamb waves are of particular importance in the field of structural health
monitoring, the present investigations must be extended to study the influence of
damage or edges on the measurement method. This need is illustrated by Fig. 11,
which shows the behavior of symmetric Lamb waves in the presence of artificial
damage caused by an additional mass. The symmetric Lamb waves pass through
the damage site and cause both reflections and interactions, which are shown at an
early time on the left and at a later time on the right. The effects of these reflections
and interactions on the accuracy of the measurements will be investigated in later
work. In addition, specimens made of aluminum or fiber-metal laminates that are
under prestress or contain residual stresses will also be studied using the presented

method.
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