1. Aurbach, D., Zinigrad, E., Cohen, Y. & Teller, H. A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions. Solid State Ionics 148, 405–416 (2002).
2. Whittingham, M. S. History, Evolution, and Future Status of Energy Storage. Proceedings of the IEEE 100, 1518–1534 (2012).
3. Armand, M. & Tarascon, J.-M. Building better batteries. Nature 451, 652–657 (2008).
4. Van Noorden, R. The rechargeable revolution: A better battery. Nature 507, 26–28 (2014).
5. Lithium Battery Incident Chart - FAA.
6. Could Chevy Volt Lithium-Ion Battery Fires Burn Out Interest in EVs and Hybrids? Scientific American (2011).
7. Tesla Says Car Fire Started in Battery. New York Times (2013).
8. Can you trust the lithium-ion battery in your pocket? The Washington Post (2016).
9. Lu, L., Han, X., Li, J., Hua, J. & Ouyang, M. A review on the key issues for lithium-ion battery management in electric vehicles. Journal of Power Sources 226, 272–288 (2013).
10. Goodenough, J. B. & Kim, Y. Challenges for Rechargeable Li Batteries. Chem. Mater. 22, 587–603 (2010).
11. Fang, C., Wang, X. & Meng, Y. S. Key Issues Hindering a Practical Lithium-Metal Anode. TRECHEM 1, 152–158 (2019).
12. Janek, J. & Zeier, W. G. A solid future for battery development. Nature Energy 1, 16141 (2016).
13. Kerman, K., Luntz, A., Viswanathan, V., Chiang, Y.-M. & Chen, Z. Review—Practical Challenges Hindering the Development of Solid State Li Ion Batteries. J. Electrochem. Soc. 164, A1731–A1744 (2017).
14. Wenzel, S., Leichtweiss, T., Krüger, D., Sann, J. & Janek, J. Interphase formation on lithium solid electrolytes—An in situ approach to study interfacial reactions by photoelectron spectroscopy. Solid State Ionics 278, 98–105 (2015).
15. Wenzel, S. et al. Interphase formation and degradation of charge transfer kinetics between a lithium metal anode and highly crystalline Li7P3S11 solid electrolyte. Solid State Ionics 286, 24–33 (2016).
16. Zhu, Y., He, X. & Mo, Y. First principles study on electrochemical and chemical stability of solid electrolyte–electrode interfaces in all-solid-state Li-ion batteries. J. Mater. Chem. A 4, 3253–3266 (2016).
17. Richards, W. D., Miara, L. J., Wang, Y., Kim, J. C. & Ceder, G. Interface Stability in Solid-State Batteries. Chem. Mater. 28, 266–273 (2016).
18. Sudo, R. et al. Interface behavior between garnet-type lithium-conducting solid electrolyte and lithium metal. Solid State Ionics 262, 151–154 (2014).
19. Suzuki, Y. et al. Transparent cubic garnet-type solid electrolyte of Al2O3-doped Li7La3Zr2O12. Solid State Ionics 278, 172–176 (2015).
20. Sharafi, A., Meyer, H. M., Nanda, J., Wolfenstine, J. & Sakamoto, J. Characterizing the Li–Li7La3Zr2O12 interface stability and kinetics as a function of temperature and current density. Journal of Power Sources 302, 135–139 (2016).
21. Aguesse, F. et al. Investigating the Dendritic Growth during Full Cell Cycling of Garnet Electrolyte in Direct Contact with Li Metal. ACS Appl. Mater. Interfaces 9, 3808–3816 (2017).
22. Basappa, R. H., Ito, T. & Yamada, H. Contact between Garnet-Type Solid Electrolyte and Lithium Metal Anode: Influence on Charge Transfer Resistance and Short Circuit Prevention. J. Electrochem. Soc. 164, A666–A671 (2017).
23. Yubuchi, S. et al. Preparation of high lithium-ion conducting Li6PS5Cl solid electrolyte from ethanol solution for all-solid-state lithium batteries | Elsevier Enhanced Reader. Journal of Power Sources 293, 941–945 (2015).
24. Yu, C., van Eijck, L., Ganapathy, S. & Wagemaker, M. Synthesis, structure and electrochemical performance of the argyrodite Li6PS5Cl solid electrolyte for Li-ion solid state batteries. Electrochimica Acta 215, 93–99 (2016).
25. Boulineau, S., Courty, M., Tarascon, J.-M. & Viallet, V. Mechanochemical synthesis of Li-argyrodite Li6PS5X (X=Cl, Br, I) as sulfur-based solid electrolytes for all solid state batteries application. Solid State Ionics 221, 1–5 (2012).
26. Bachman, J. C. et al. Inorganic Solid-State Electrolytes for Lithium Batteries: Mechanisms and Properties Governing Ion Conduction. Chemical Reviews 116, 140–162 (2016).
27. Sun, M. et al. Visualizing Lithium Dendrite Formation within Solid-State Electrolytes. ACS Energy Lett. 6, 451–458 (2021).
28. Wang, S. et al. High-Conductivity Argyrodite Li 6 PS 5 Cl Solid Electrolytes Prepared via Optimized Sintering Processes for All-Solid-State Lithium–Sulfur Batteries. ACS Appl. Mater. Interfaces 10, 42279–42285 (2018).
29. Hänsel, C. & Kundu, D. The Stack Pressure Dilemma in Sulfide Electrolyte Based Li Metal Solid-State Batteries: A Case Study with Li6PS5Cl Solid Electrolyte. Advanced Materials Interfaces 8, 2100206 (2021).
30. McGrogan, F. P. et al. Compliant Yet Brittle Mechanical Behavior of Li2S–P2S5 Lithium-Ion-Conducting Solid Electrolyte. Advanced Energy Materials 7, 1602011 (2017).
31. Tippens, J. et al. Visualizing Chemomechanical Degradation of a Solid-State Battery Electrolyte. ACS Energy Lett. 4, 1475–1483 (2019).
32. Han, F. et al. High electronic conductivity as the origin of lithium dendrite formation within solid electrolytes. Nature Energy 4, 187–196 (2019).
33. Liu, H. et al. Controlling Dendrite Growth in Solid-State Electrolytes. ACS Energy Lett. 5, 833–843 (2020).
34. Tian, H.-K., Xu, B. & Qi, Y. Computational study of lithium nucleation tendency in Li7La3Zr2O12 (LLZO) and rational design of interlayer materials to prevent lithium dendrites. Journal of Power Sources 392, 79–86 (2018).
35. Liu, Q. et al. In Situ Observation of Sodium Dendrite Growth and Concurrent Mechanical Property Measurements Using an Environmental Transmission Electron Microscopy–Atomic Force Microscopy (ETEM-AFM) Platform. ACS Energy Lett. 5, 2546–2559 (2020).
36. LePage, W. S. et al. Lithium Mechanics: Roles of Strain Rate and Temperature and Implications for Lithium Metal Batteries. J. Electrochem. Soc. 166, A89–A97 (2019).
37. Porz, L. et al. Mechanism of Lithium Metal Penetration through Inorganic Solid Electrolytes. Advanced Energy Materials 7, 1701003 (2017).
38. Sun, H. et al. In Situ Visualization of Lithium Penetration through Solid Electrolyte and Dead Lithium Dynamics in Solid-State Lithium Metal Batteries. ACS Nano acsnano.1c04864 (2021) doi:10.1021/acsnano.1c04864.
39. Diaz, M. & Kushima, A. Direct Observation and Quantitative Analysis of Lithium Dendrite Growth by In Situ Transmission Electron Microscopy. J. Electrochem. Soc. 168, (2021).
40. He, Y. et al. Origin of lithium whisker formation and growth under stress. Nat. Nanotechnol. 14, 1042–1047 (2019).
41. Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558 (1993).
42. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996).
43. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 77, 3865 (1996).
44. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758 (1999).
45. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953 (1994).
46. Monkhorst, H. J. & Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188 (1976).
47. Ning, Z. et al. Visualizing plating-induced cracking in lithium-anode solid-electrolyte cells. Nat. Mater. 20, 1121–1129 (2021).
48. Garcia-Mendez, R., Smith, J. G., Neuefeind, J. C., Siegel, D. J. & Sakamoto, J. Correlating Macro and Atomic Structure with Elastic Properties and Ionic Transport of Glassy Li2S-P2S5 (LPS) Solid Electrolyte for Solid-State Li Metal Batteries. Advanced Energy Materials 10, 2000335 (2020).
49. Santhanagopalan, D. et al. Interface Limited Lithium Transport in Solid-State Batteries. J. Phys. Chem. Lett. 5, 298–303 (2014).
50. Yue, J. & Guo, Y.-G. The devil is in the electrons. Nat Energy 4, 174–175 (2019).