The pressure wave is of crucial importance for subway development since it greatly influences the comfort while taking. As the subway lines are rapidly developing in the cities, the pressure wave in different subway tunnel constructures is urgently needed to be studied and receded. In this paper, a subway tunnel pressure wave experimental system was designed, constructed, and tested. The influence of train model head shape, train model speed, shaft number in the tunnel, and bypass number in the tunnel on the pressure wave amplitude were experimented with and analyzed. The results show that the train model head shapes significantly impact the amplitude of the initial compression wave in the tunnel. The blunter train model head generates a greater amplitude of the initial compression wave. When the train passes through a single-track tunnel, the maximum positive pressure amplitude of the pressure wave in the tunnel is at the first compression wave at the tunnel entrance. The maximum negative pressure value in the tunnel is at the superposition of the initial compression wave reflected from the first time and the train's body, which is related to the length of the train's body, tunnel length, train's speed, and sound speed. The shaft set in the tunnel decreases the amplitude of the initial compression wave in the tunnel space behind, but it will increase the pressure wave's amplitude reflected in the tunnel when the train passes through the shaft. After the bypass tunnel is added, the initial compression wave propagation in the tunnel behind the bypass tunnel is receded. Still, it also increases the negative pressure amplitude when the train passes.