1. Harder, D. K. & Smartt, J. Further evidence on the origin of the cultivated winged bean,Psophocarpus tetragonolobus (L.) DC. (Fabaceae): Chromosome numbers and the presence of a host-specific fungus. Econ. Bot. 46, 187–191 (1992).
2. Tanzi, A. S. et al. Winged bean (Psophocarpus tetragonolobus (L.) DC.) for food and nutritional security: synthesis of past research and future direction. Planta 250, 911–931 (2019).
3. Hildebrand, D. F., Blevins, D. G. & Hymowitz, T. Cross-inoculation specificity ofPsophocarpus tetragonolobus (L.) DC. Plant Soil 60, 139–142 (1981).
4. Iruthayathas, E. E. & Vlassak, K. Promiscuity of some legume species with winged bean Rhizobium strains. Sci. Hortic. (Amsterdam). 31, 1–9 (1987).
5. Tanzi, A. S., Ho, W. K., Massawe, F. & Mayes, S. Development and interaction between plant architecture and yield-related traits in winged bean (Psophocarpus tetragonolobus (L.) DC.). Euphytica 215, 36 (2019).
6. National Research Council. 1981. Winged Bean: A High-Protein Crop for the Tropics. Washington, DC: The National Academies Press.https://doi.org/10.17226/19754
7. Gross, R. Composition and protein quality of winged bean (Psophocarpus tetragonolobus). Qual. Plant. Plant Foods Hum. Nutr. 32, 117–124 (1983).
8. Garcia, V. V. & Palmer, J. K. Proximate analysis of five varieties of winged beans, Psophocarpus tetragonolobus (L.) DC*. Int. J. Food Sci. Technol. 15, 469–476 (2007).
9. Kotaru, M. Investigations of antinutritional factors of the winged bean (Psophocarpus tetragonolobus). Food Chem. 24, 279–286 (1987).
10. Adegboyega, T. T. et al. Nutrient and Antinutrient Composition of Winged Bean ( Psophocarpus tetragonolobus (L.) DC.) Seeds and Tubers. J. Food Qual. 2019, 1–8 (2019).
11. Tan, N. H., Rahim, Z. H. A., Khor, H. T. & Wong, K. C. Winged bean (Psophocarpus tetragonolobus) tannin level, phytate content and hemagglutinating activity. J. Agric. Food Chem. 31, 916–917 (1983).
12. Sambudi, H. & Buckle, K. A. Characteristics of winged bean (Psophocarpus tetragonolobus) seeds during soaking and boiling. J. Sci. Food Agric. 57, 585–595 (1991).
13. Wong, Q. et al. Development of Gene‐Based SSR Markers in Winged Bean (Psophocarpus tetragonolobus (L.) DC.) for Diversity Assessment. Genes (Basel). 8, 100 (2017).
14. Hunt, S. P. et al. A Chromosome-Scale Assembly of the Garden Orach (Atriplex hortensis L.) Genome Using Oxford Nanopore Sequencing. Front. Plant Sci. 11, (2020).
15. Vatanparast, M. et al. Transcriptome sequencing and marker development in winged bean (Psophocarpus tetragonolobus; Leguminosae). Sci. Rep. 6, 29070 (2016).
16. Bennett, M. D. & Smith, J. B. Nuclear dna amounts in angiosperms. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 274, 227–274 (1976).
17. Xia, Q. et al. The genome assembly of asparagus bean, Vigna unguiculata ssp. sesquipedialis. Sci. Data 6, 124 (2019).
18. Lonardi, S. et al. The genome of cowpea (Vigna unguiculata [L.] Walp.). Plant J. 98, 767–782 (2019).
19. DOE-JGI and USDA-NIFA. Phaseolus vulgaris v2.1. http://phytozome.jgi.doe.gov.
20. Schmutz et al. Genome sequence of the palaeopolyploid soybean. Nature 463, 178–183 (2010).
21. Schmutz, J. et al. A reference genome for common bean and genome-wide analysis of dual domestications. Nat. Genet. 46, 707–713 (2014).
22. Laosatit, K., Amkul, K., Chankaew, S. & Somta, P. Molecular Genetic Diversity of Winged Bean Gene Pool in Thailand Assessed by SSR Markers. Hortic. Plant J. (2021) doi:10.1016/j.hpj.2021.05.001.
23. Yang, S., Grall, A. & Chapman, M. A. Origin and diversification of winged bean ( Psophocarpus tetragonolobus (L.) DC.), a multipurpose underutilized legume. Am. J. Bot. 105, 888–897 (2018).
24. Yan, J. et al. Genetic Characterization and Linkage Disequilibrium Estimation of a Global Maize Collection Using SNP Markers. PLoS One 4, e8451 (2009).
25. Li, M. et al. Identification of genetic loci and candidate genes related to soybean flowering through genome wide association study. BMC Genomics 20, 987 (2019).
26. Wen, Z. et al. Genome-wide association mapping of quantitative resistance to sudden death syndrome in soybean. BMC Genomics 15, (2014).
27. Delfini, J. et al. Population structure, genetic diversity and genomic selection signatures among a Brazilian common bean germplasm. Sci. Rep. 11, 2964 (2021).
28. Raggi, L., Caproni, L., Carboni, A. & Negri, V. Genome-Wide Association Study Reveals Candidate Genes for Flowering Time Variation in Common Bean (Phaseolus vulgaris L.). Front. Plant Sci. 10, (2019).
29. Muñoz‐Amatriaín, M. et al. The UCR Minicore: a valuable resource for cowpea research and breeding. Legum. Sci. (2021) doi:10.1002/leg3.95.
30. Yanagi, S. O. Properties of Winged Bean (Psophocarpus tetragonolobus) Protein in Comparison with Soybean (Glycine max) and Common Bean (Phaseolus vulgaris) Protein. Agric. Biol. Chem. 47, 2273–2280 (1983).
31. Makeri, M. U., Mohamed, S. A., Karim, R., Ramakrishnan, Y. & Muhammad, K. Fractionation, physicochemical, and structural characterization of winged bean seed protein fractions with reference to soybean. Int. J. Food Prop. 1–17 (2017) doi:10.1080/10942912.2017.1369101.
32. Verma, S. & Bhatia, S. Analysis of genes encoding seed storage proteins (SSPs) in chickpea (Cicer arietinum L.) reveals co-expressing transcription factors and a seed-specific promoter. Funct. Integr. Genomics 19, 373–390 (2019).
33. Warsame, A. O., Michael, N., O’Sullivan, D. M. & Tosi, P. Identification and Quantification of Major Faba Bean Seed Proteins. J. Agric. Food Chem. 68, 8535–8544 (2020).
34. Ochiai Yanagi, S., Yoshida, N. & Saio, K. Generality and Diversity of Winged Bean ( Psophocarpus tetragonolobus ) Protein in Eight Various Lines. Agric. Biol. Chem. 47, 2267–2271 (1983).
35. Yin, F. et al. Analysis of common bean expressed sequence tags identifies sulfur metabolic pathways active in seed and sulfur-rich proteins highly expressed in the absence of phaseolin and major lectins. BMC Genomics 12, 268 (2011).
36. Saio, K., Nakano, Y. & Uemoto, S. Microstrcture of Winged Beans. Food Microdtructure 2, 175–181 (1983).
37. YANAGI, S. Winged bean protein in comparison with other legume protein. JARQ 18, 53–59 (1984).
38. Obala, J. et al. Seed protein content and its relationships with agronomic traits in pigeonpea is controlled by both main and epistatic effects QTLs. Sci. Rep. 10, 214 (2020).
39. Zhang, Y. H. et al. Marker-assisted breeding for transgressive seed protein content in soybean [Glycine max (L.) Merr.]. Theor. Appl. Genet. 128, 1061–1072 (2015).
40. Krajewski, P. et al. QTL for yield components and protein content: A multienvironment study of two pea (Pisum sativum L.) populations. Euphytica 183, 323–336 (2012).
41. Gong, Q. et al. Meta-analysis of soybean amino acid QTLs and candidate gene mining. J. Integr. Agric. 17, 1074–1084 (2018).
42. Zhang, H. et al. Transcriptome profiling reveals the spatial-temporal dynamics of gene expression essential for soybean seed development. BMC Genomics 22, 453 (2021).
43. Parreira, J. R., Cappuccio, M., Balestrazzi, A., Fevereiro, P. & Araújo, S. de S. MicroRNAs expression dynamics reveal post-transcriptional mechanisms regulating seed development in Phaseolus vulgaris L. Hortic. Res. 8, 18 (2021).
44. Li, Y., Xia, T., Gao, F. & Li, Y. Control of Plant Branching by the CUC2/CUC3-DA1-UBP15 Regulatory Module. Plant Cell 32, 1919–1932 (2020).
45. Zheng, G. et al. Conserved and novel roles of miR164‐ CUC 2 regulatory module in specifying leaf and floral organ morphology in strawberry. New Phytol. 224, 480–492 (2019).
46. Malaviya, D. R., Roy, A. K., Kaushal, P., Yadav, A. & Pandey, D. K. Complementary gene interaction and xenia effect controls the seed coat colour in interspecific cross between Trifolium alexandrinum and T. apertum. Genetica 147, 197–203 (2019).
47. Ha, J. et al. Transcriptomic variation in proanthocyanidin biosynthesis pathway genes in soybean ( Glycine spp.). J. Sci. Food Agric. 98, 2138–2146 (2018).
48. Zabala, G. & Vodkin, L. O. Methylation affects transposition and splicing of a large CACTA transposon from a MYB transcription factor regulating anthocyanin synthase genes in soybean seed coats. PLoS One 9, (2014).
49. Gao, R. et al. MYB transcription factors GmMYBA2 and GmMYBR function in a feedback loop to control pigmentation of seed coat in soybean. J. Exp. Bot. 72, 4401–4418 (2021).
50. Li, Y. et al. Integrated Metabolomics and Transcriptomics Analyses Reveal the Molecular Mechanisms Underlying the Accumulation of Anthocyanins and Other Flavonoids in Cowpea Pod ( Vigna unguiculata L.). J. Agric. Food Chem. 68, 9260–9275 (2020).
52. Lin-Wang, K. et al. An R2R3 MYB transcription factor associated with regulation of the anthocyanin biosynthetic pathway in Rosaceae. BMC Plant Biol. 10, 50 (2010).
53. Chiu, L.-W. et al. The Purple Cauliflower Arises from Activation of a MYB Transcription Factor. Plant Physiol. 154, 1470–1480 (2010).
53. Herniter, I. A., Muñoz-Amatriaín, M., Lo, S., Guo, Y.-N. & Close, T. J. Identification of Candidate Genes Controlling Black Seed Coat and Pod Tip Color in Cowpea ( Vigna unguiculata [L.] Walp). G3 Genes|Genomes|Genetics 8, 3347–3355 (2018).
54. Stracke, R., Werber, M. & Weisshaar, B. The R2R3-MYB gene family in Arabidopsis thaliana. Curr. Opin. Plant Biol. 4, 447–456 (2001).
55. Deng, J. et al. Multiple MYB Activators and Repressors Collaboratively Regulate the Juvenile Red Fading in Leaves of Sweetpotato. Front. Plant Sci. 11, (2020).
56. Liu, J., Osbourn, A. & Ma, P. MYB Transcription Factors as Regulators of Phenylpropanoid Metabolism in Plants. Mol. Plant 8, 689–708 (2015).
57. Yan, F. et al. Loss-of-Function Mutation of Soybean R2R3 MYB Transcription Factor Dilutes Tawny Pubescence Color. Front. Plant Sci. 10, (2020).
58. Muñoz-Gómez, S., Suárez-Baron, H., Alzate, J. F., González, F. & Pabón-Mora, N. Evolution of the Subgroup 6 R2R3-MYB Genes and Their Contribution to Floral Color in the Perianth-Bearing Piperales. Front. Plant Sci. 12, (2021).
59. Plunkett, B. J. et al. MYBA From Blueberry (Vaccinium Section Cyanococcus) Is a Subgroup 6 Type R2R3MYB Transcription Factor That Activates Anthocyanin Production. Front. Plant Sci. 9, (2018).
60. Kubo, H., Peeters, A. J. M., Aarts, M. G. M., Pereira, A. & Koornneef, M. ANTHOCYANINLESS2 , a Homeobox Gene Affecting Anthocyanin Distribution and Root Development in Arabidopsis. Plant Cell 11, 1217–1226 (1999).
61. Wei, Z. et al. Genome-Wide Identification of Direct Targets of the TTG1–bHLH–MYB Complex in Regulating Trichome Formation and Flavonoid Accumulation in Arabidopsis Thaliana. Int. J. Mol. Sci. 20, 5014 (2019).
62. Singh, V., Goel, R., Pande, V., Asif, M. H. & Mohanty, C. S. De novo sequencing and comparative analysis of leaf transcriptomes of diverse condensed tannin-containing lines of underutilized Psophocarpus tetragonolobus (L.) DC. Sci. Rep. 7, 44733 (2017).
63. Stefanović, S., Pfeil, B. E., Palmer, J. D. & Doyle, J. J. Relationships among phaseoloid legumes based on sequences from eight chloroplast regions. Syst. Bot. 34, 115–128 (2009).
64. Jason R. Miller, N. H. B. and A. M. P. S. K. B. P. W. K. B. Canu: Scalable and accurate long-read assembly via adaptive κ-mer weighting and repeat separation. Genome Res. 27, 722–736 (2017).
65. Ruan, J. & Li, H. Fast and accurate long-read assembly with wtdbg2. Nat. Methods 17, 155–158 (2020).
66. Vaser, R., Sović, I., Nagarajan, N. & Šikić, M. Fast and accurate de novo genome assembly from long uncorrected reads. Fast accurate novo genome Assem. from long uncorrected reads 068122 (2016) doi:10.1101/068122.
67. Walker, B. J. et al. Pilon: An integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS One 9, e112963 (2014).
68. Ou, S. et al. Benchmarking Transposable Element Annotation Methods for Creation of a Streamlined, Comprehensive Pipeline. bioRxiv (2019) doi:10.1101/657890.
69. Wicker, T. et al. A unified classification system for eukaryotic transposable elements. Nat. Rev. Genet. 8, 973–982 (2007).
70. G, M. & C., K. A fast, lock-free approach for efficient parallel counting of occurrences of k-mers. Bioinformatics 27, 764–770 (2011).
71. Vurture, G. W. et al. GenomeScope: fast reference-free genome profiling from short reads. Bioinformatics 33, 2202–2204 (2017).
72. Grabherr, M. G. et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 29, 644–652 (2011).
73. Li, W. & Godzik, A. Cd-hit: A fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22, 1658–1659 (2006).
74. Holt, C. & Yandell, M. MAKER2: an annotation pipeline and genome-database management tool for second-generation genome projects. BMC Bioinformatics 12, 491 (2011).
75. Jin, J. et al. PlantTFDB 4.0: toward a central hub for transcription factors and regulatory interactions in plants. Nucleic Acids Res. 45, D1040–D1045 (2017).
76. Wang, Y. et al. MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res. 40, e49–e49 (2012).
77. Bandi, V. & Gutwin, C. Interactive Exploration of Genomic Conservation. in Proceedings of the 46th Graphics Interface Conference on Proceedings of Graphics Interface 2020 (GI’20) (Canadian Human-Computer Communications Society, Waterloo, CAN, 2020).
78. Kilian, A., Sanewski, G. & Ko, L. The application of DArTseq technology to pineapple. Acta Hortic. 181–188 (2016) doi:10.17660/ActaHortic.2016.1111.27.
79. Van Ooijen, J. W. JoinMap 5 ® Software for the calculation of genetic linkage maps in experimental populations of diploid species. Kyazma B.V., Wageningen, Netherlands 1–61 (2019).
80. Raj, A., Stephens, M. & Pritchard, J. K. FastSTRUCTURE: Variational inference of population structure in large SNP data sets. Genetics 197, 573–589 (2014).
81. Bradbury, P. J. et al. TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23, 2633–2635 (2007).
82. Paradis, E. & Schliep, K. Ape 5.0: An environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35, 526–528 (2019).
83. Thioulouse, J. et al. Multivariate Analysis of Ecological Data with ade4. (Springer New York, 2018). doi:10.1007/978-1-4939-8850-1.
84. Jombart, T. adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 24, 1403–1405 (2008).
85. Kamvar, Z. N., Tabima, J. F. & Grünwald, N. J. Poppr : an R package for genetic analysis of populations with clonal, partially clonal, and/or sexual reproduction. PeerJ 2, e281 (2014).
86. Letunic, I. & Bork, P. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 49, W293–W296 (2021).
87. Winter, D. J. <scp>mmod</scp> : an R library for the calculation of population differentiation statistics. Mol. Ecol. Resour. 12, 1158–1160 (2012).
88. Van Ooijen, J. W. MapQTL 6 - Software for the mapping of quantitative trait loci in experimental populations of diploid species. Kyazma B. V. 64 (2009).
89. Voorrips, R. E. MapChart: Software for the Graphical Presentation of Linkage Maps and QTLs. J. Hered. 93, 77–78 (2002).
90. Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004).
91. S., K., G., S., M., L., C., K. & K., T. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol. Biol. Evol.35, 1547–1549 (2018).