[1] M. Weller, W. Wick, K. Aldape, M. Brada, M. Berger, S.M. Pfister, R. Nishikawa, M. Rosenthal, P.Y. Wen, R. Stupp, G. Reifenberger, Glioma, Nat Rev Dis Primers 1 (2015) 15017.
[2] L.E. Donovan, A.B. Lassman, Chemotherapy Treatment and Trials in Low-Grade Gliomas, Neurosurg Clin N Am 30(1) (2019) 103-109.
[3] S. Jiapaer, T. Furuta, S. Tanaka, T. Kitabayashi, M. Nakada, Potential Strategies Overcoming the Temozolomide Resistance for Glioblastoma, Neurol Med Chir (Tokyo) 58(10) (2018) 405-421.
[4] G. Andre-Gregoire, N. Bidere, J. Gavard, Temozolomide affects Extracellular Vesicles Released by Glioblastoma Cells, Biochimie 155 (2018) 11-15.
[5] A. Balasa, G. Serban, R. Chinezu, C. Hurghis, F. Tamas, D. Manu, The Involvement of Exosomes in Glioblastoma Development, Diagnosis, Prognosis, and Treatment, Brain Sci 10(8) (2020).
[6] J. Cheng, J. Meng, L. Zhu, Y. Peng, Exosomal noncoding RNAs in Glioma: biological functions and potential clinical applications, Mol Cancer 19(1) (2020) 66.
[7] J. Liu, K. Zhao, N. Huang, N. Zhang, Circular RNAs and human glioma, Cancer Biol Med 16(1) (2019) 11-23.
[8] Y. Yuan, L. Jiaoming, W. Xiang, L. Yanhui, J. Shu, G. Maling, M. Qing, Analyzing the interactions of mRNAs, miRNAs, lncRNAs and circRNAs to predict competing endogenous RNA networks in glioblastoma, J Neurooncol 137(3) (2018) 493-502.
[9] C. Ding, X. Yi, X. Wu, X. Bu, D. Wang, Z. Wu, G. Zhang, J. Gu, D. Kang, Exosome-mediated transfer of circRNA CircNFIX enhances temozolomide resistance in glioma, Cancer Lett 479 (2020) 1-12.
[10] C. Han, S. Wang, H. Wang, J. Zhang, Exosomal Circ-HIPK3 Facilitates Tumor Progression and Temozolomide Resistance by Regulating miR-421/ZIC5 Axis in Glioma, Cancer Biother Radiopharm (2020).
[11] T. Liu, S. Liu, Y. Xu, R. Shu, F. Wang, C. Chen, Y. Zeng, H. Luo, Circular RNA-ZFR Inhibited Cell Proliferation and Promoted Apoptosis in Gastric Cancer by Sponging miR-130a/miR-107 and Modulating PTEN, Cancer Res Treat 50(4) (2018) 1396-1417.
[12] H. Wei, L. Pan, D. Tao, R. Li, Circular RNA circZFR contributes to papillary thyroid cancer cell proliferation and invasion by sponging miR-1261 and facilitating C8orf4 expression, Biochem Biophys Res Commun 503(1) (2018) 56-61.
[13] B. Banelli, A. Forlani, G. Allemanni, A. Morabito, M.P. Pistillo, M. Romani, MicroRNA in Glioblastoma: An Overview, Int J Genomics 2017 (2017) 7639084.
[14] S.Y. Low, Y.K. Ho, H.P. Too, C.T. Yap, W.H. Ng, MicroRNA as potential modulators in chemoresistant high-grade gliomas, J Clin Neurosci 21(3) (2014) 395-400.
[15] X. Tian, L. Zhang, Y. Jiao, J. Chen, Y. Shan, W. Yang, CircABCB10 promotes nonsmall cell lung cancer cell proliferation and migration by regulating the miR-1252/FOXR2 axis, J Cell Biochem 120(3) (2019) 3765-3772.
[16] Z. Hu, P. Zhao, K. Zhang, L. Zang, H. Liao, W. Ma, Hsa_circ_0011290 regulates proliferation, apoptosis and glycolytic phenotype in papillary thyroid cancer via miR-1252/ FSTL1 signal pathway, Arch Biochem Biophys 685 (2020) 108353.
[17] S. Zhang, J. Cheng, C. Quan, H. Wen, Z. Feng, Q. Hu, J. Zhu, Y. Huang, X. Wu, circCELSR1 (hsa_circ_0063809) Contributes to Paclitaxel Resistance of Ovarian Cancer Cells by Regulating FOXR2 Expression via miR-1252, Mol Ther Nucleic Acids 19 (2020) 718-730.
[18] C.R. Jeter, T. Yang, J. Wang, H.P. Chao, D.G. Tang, Concise Review: NANOG in Cancer Stem Cells and Tumor Development: An Update and Outstanding Questions, Stem Cells 33(8) (2015) 2381-90.
[19] Z. Wang, J. Yang, G. Xu, W. Wang, C. Liu, H. Yang, Z. Yu, Q. Lei, L. Xiao, J. Xiong, L. Zeng, J. Xiang, J. Ma, G. Li, M. Wu, Targeting miR-381-NEFL axis sensitizes glioblastoma cells to temozolomide by regulating stemness factors and multidrug resistance factors, Oncotarget 6(5) (2015) 3147-64.
[20] C.D. Cheng, Y.F. Dong, W.X. Niu, C.S. Niu, HAUSP promoted the growth of glioma cells in vitro and in vivo via stabilizing NANOG, Pathol Res Pract 216(4) (2020) 152883.
[21] Y.C. Yi, X.Y. Chen, J. Zhang, J.S. Zhu, Novel insights into the interplay between m(6)A modification and noncoding RNAs in cancer, Mol Cancer 19(1) (2020) 121.
[22] J. Wang, J. Wang, Q. Gu, Y. Ma, Y. Yang, J. Zhu, Q. Zhang, The biological function of m6A demethylase ALKBH5 and its role in human disease, Cancer Cell Int 20 (2020) 347.
[23] S. Zhang, B.S. Zhao, A. Zhou, K. Lin, S. Zheng, Z. Lu, Y. Chen, E.P. Sulman, K. Xie, O. Bogler, S. Majumder, C. He, S. Huang, m(6)A Demethylase ALKBH5 Maintains Tumorigenicity of Glioblastoma Stem-like Cells by Sustaining FOXM1 Expression and Cell Proliferation Program, Cancer Cell 31(4) (2017) 591-606 e6.
[24] C. Zhang, D. Samanta, H. Lu, J.W. Bullen, H. Zhang, I. Chen, X. He, G.L. Semenza, Hypoxia induces the breast cancer stem cell phenotype by HIF-dependent and ALKBH5-mediated m(6)A-demethylation of NANOG mRNA, Proc Natl Acad Sci U S A 113(14) (2016) E2047-56.
[25] B. Oldrini, N. Vaquero-Siguero, Q. Mu, P. Kroon, Y. Zhang, M. Galan-Ganga, Z. Bao, Z. Wang, H. Liu, J.K. Sa, J. Zhao, H. Kim, S. Rodriguez-Perales, D.H. Nam, R.G.W. Verhaak, R. Rabadan, T. Jiang, J. Wang, M. Squatrito, MGMT genomic rearrangements contribute to chemotherapy resistance in gliomas, Nat Commun 11(1) (2020) 3883.
[26] M. Kanemoto, M. Shirahata, A. Nakauma, K. Nakanishi, K. Taniguchi, Y. Kukita, Y. Arakawa, S. Miyamoto, K. Kato, Prognostic prediction of glioblastoma by quantitative assessment of the methylation status of the entire MGMT promoter region, BMC Cancer 14 (2014) 641.
[27] T. Cai, Y. Liu, J. Xiao, Long noncoding RNA MALAT1 knockdown reverses chemoresistance to temozolomide via promoting microRNA-101 in glioblastoma, Cancer Med 7(4) (2018) 1404-1415.
[28] B. Yu, Q. Du, H. Li, H. Liu, X. Ye, B. Zhu, Q. Zhai, X. Li, Diagnostic potential of serum exosomal colorectal neoplasia differentially expressed long non-coding RNA (CRNDE-p) and microRNA-217 expression in colorectal carcinoma, Oncotarget 8(48) (2017) 83745-83753.
[29] R. Zheng, M. Du, X. Wang, W. Xu, J. Liang, W. Wang, Q. Lv, C. Qin, H. Chu, M. Wang , L. Yuan, J. Qian, Z. Zhang, Exosome-transmitted long non-coding RNA PTENP1 suppresses bladder cancer progression, Molecular cancer 17(1) (2018) 143.
[30] Y. Wei, D. Wang, F. Jin, Z. Bian, L. Li, H. Liang, M. Li, L. Shi, C. Pan, D. Zhu, X. Chen, G. Hu, Y. Liu, C.Y. Zhang, K. Zen, Pyruvate kinase type M2 promotes tumour cell exosome release via phosphorylating synaptosome-associated protein 23, Nat Commun 8 (2017) 14041.
[31] K. Aldape, K.M. Brindle, L. Chesler, R. Chopra, A. Gajjar, M.R. Gilbert, N. Gottardo, D.H. Gutmann, D. Hargrave, E.C. Holland, D.T.W. Jones, J.A. Joyce, P. Kearns, M.W. Kieran, I.K. Mellinghoff, M. Merchant, S.M. Pfister, S.M. Pollard, V. Ramaswamy, J.N. Rich, G.W. Robinson, D.H. Rowitch, J.H. Sampson, M.D. Taylor, P. Workman, R.J. Gilbertson, Challenges to curing primary brain tumours, Nat Rev Clin Oncol 16(8) (2019) 509-520.
[32] A. Arora, K. Somasundaram, Glioblastoma vs temozolomide: can the red queen race be won?, Cancer Biol Ther 20(8) (2019) 1083-1090.
[33] H. Zhang, X. Wang, B. Hu, F. Zhang, H. Wei, L. Li, Circular RNA ZFR accelerates non-small cell lung cancer progression by acting as a miR-101-3p sponge to enhance CUL4B expression, Artif Cells Nanomed Biotechnol 47(1) (2019) 3410-3416.
[34] H. Li, F. Liu, W. Qin, Circ_0072083 interference enhances growth-inhibiting effects of cisplatin in non-small-cell lung cancer cells via miR-545-3p/CBLL1 axis, Cancer Cell Int 20 (2020) 78.
[35] O.G. Wong, A.N. Cheung, Stem cell transcription factor NANOG in cancers--is eternal youth a curse?, Expert Opin Ther Targets 20(4) (2016) 407-17.
[36] N. Gawlik-Rzemieniewska, I. Bednarek, The role of NANOG transcriptional factor in the development of malignant phenotype of cancer cells, Cancer Biol Ther 17(1) (2016) 1-10.
[37] X.T. Li, J.C. Li, M. Feng, Y.X. Zhou, Z.W. Du, Novel lncRNA-ZNF281 regulates cell growth, stemness and invasion of glioma stem-like U251s cells, Neoplasma 66(1) (2019) 118-127.
[38] J.B. Yu, H. Jiang, R.Y. Zhan, Aberrant Notch signaling in glioblastoma stem cells contributes to tumor recurrence and invasion, Mol Med Rep 14(2) (2016) 1263-8.
[39] L. Zhang, Y. Yan, Y. Jiang, J. Qian, L. Jiang, G. Hu, Y. Lu, C. Luo, Knockdown of SALL4 expression using RNA interference induces cell cycle arrest, enhances early apoptosis, inhibits invasion and increases chemosensitivity to temozolomide in U251 glioma cells, Oncol Lett 14(4) (2017) 4263-4269.
[40] W. Huang, Z. Zhong, C. Luo, Y. Xiao, L. Li, X. Zhang, L. Yang, K. Xiao, Y. Ning, L. Chen, Q. Liu, X. Hu, J. Zhang, X. Ding, S. Xiang, The miR-26a/AP-2alpha/Nanog signaling axis mediates stem cell self-renewal and temozolomide resistance in glioma, Theranostics 9(19) (2019) 5497-5516.
[41] S. Galardi, A. Michienzi, S.A. Ciafre, Insights into the Regulatory Role of m(6)A Epitranscriptome in Glioblastoma, Int J Mol Sci 21(8) (2020).
[42] K. Bhawe, Q. Felty, C. Yoo, N.Z. Ehtesham, S.E. Hasnain, V.P. Singh, I. Mohapatra, D. Roy, Nuclear Respiratory Factor 1 (NRF1) Transcriptional Activity-Driven Gene Signature Association with Severity of Astrocytoma and Poor Prognosis of Glioblastoma, Mol Neurobiol 57(9) (2020) 3827-3845.
[43] B. Liu, J. Zhou, C. Wang, Y. Chi, Q. Wei, Z. Fu, C. Lian, Q. Huang, C. Liao, Z. Yang, H. Zeng, N. Xu, H. Guo, LncRNA SOX2OT promotes temozolomide resistance by elevating SOX2 expression via ALKBH5-mediated epigenetic regulation in glioblastoma, Cell Death Dis 11(5) (2020) 384.
[44] O. Shriwas, M. Priyadarshini, S.K. Samal, R. Rath, S. Panda, S.K. Das Majumdar, D.K. Muduly, M. Botlagunta, R. Dash, DDX3 modulates cisplatin resistance in OSCC through ALKBH5-mediated m(6)A-demethylation of FOXM1 and NANOG, Apoptosis 25(3-4) (2020) 233-246.
[45] Y. Jiang, Y. Wan, M. Gong, S. Zhou, J. Qiu, W. Cheng, RNA demethylase ALKBH5 promotes ovarian carcinogenesis in a simulated tumour microenvironment through stimulating NF-kappaB pathway, J Cell Mol Med 24(11) (2020) 6137-6148.
[46] X. Geng, X. Lin, Y. Zhang, Q. Li, Y. Guo, C. Fang, H. Wang, Exosomal circular RNA sorting mechanisms and their function in promoting or inhibiting cancer, Oncol Lett 19(5) (2020) 3369-3380.
[47] H. Zhao, L. Yang, J. Baddour, A. Achreja, V. Bernard, T. Moss, J.C. Marini, T. Tudawe, E.G. Seviour, F.A. San Lucas, H. Alvarez, S. Gupta, S.N. Maiti, L. Cooper, D. Peehl, P.T. Ram, A. Maitra, D. Nagrath, Tumor microenvironment derived exosomes pleiotropically modulate cancer cell metabolism, Elife 5 (2016) e10250.
[48] Z. Ma, X. Cui, L. Lu, G. Chen, Y. Yang, Y. Hu, Y. Lu, Z. Cao, Y. Wang, X. Wang, Exosomes from glioma cells induce a tumor-like phenotype in mesenchymal stem cells by activating glycolysis, Stem Cell Res Ther 10(1) (2019) 60.
[49] E.R. Matarredona, A.M. Pastor, Extracellular Vesicle-Mediated Communication between the Glioblastoma and Its Microenvironment, Cells 9(1) (2019).