AMAP/UNEP. (2013). Technical Background Report for the Global Mercury Assessment. Arctic Monitoring and Assessment Programme, 263. Retrieved from http://www.amap.no/documents/doc/technical-background-report-for-the-global-mercury-assessment-2013/848
Amos, H. M., Jacob, D. J., Streets, D. G., & Sunderland, E. M. (2013). Legacy impacts of all-time anthropogenic emissions on the global mercury cycle. Global Biogeochemical Cycles, 27(2), 410–421. https://doi.org/10.1002/gbc.20040
Angot, H., Hoffman, N., Giang, A., Thackray, C. P., Hendricks, A. N., Urban, N. R., & Selin, N. E. (2018). Global and Local Impacts of Delayed Mercury Mitigation Efforts. https://doi.org/10.1021/acs.est.8b04542
Axelrad, D. A., Bellinger, D. C., Ryan, L. M., & Woodruff, T. J. (2007). Dose-response relationship of prenatal mercury exposure and IQ: An integrative analysis of epidemiologic data. Environmental Health Perspectives, 115(4), 609–615. https://doi.org/10.1289/ehp.9303
Basu, N., Horvat, M., Evers, D. C., Zastenskaya, I., Weihe, P., & Tempowski, J. (2018). A state-of-the-science review of mercury biomarkers in human populations worldwide between 2000 and 2018. Environmental Health Perspectives, 126(10), 1–14. https://doi.org/10.1289/EHP3904
Bellanger, M., Pichery, C., Aerts, D., Berglund, M., Castaño, A., Čejchanová, M., et al. (2013). Economic benefits of methylmercury exposure control in Europe: Monetary value of neurotoxicity prevention. Environmental Health: A Global Access Science Source, 12(1), 1–10. https://doi.org/10.1186/1476-069X-12-3
Bellinger, D. C. (2012). A strategy for comparing the contributions of environmental chemicals and other risk factors to neurodevelopment of children. Environmental Health Perspectives, 120(4), 501–507. https://doi.org/10.1289/ehp.1104170
Chen, L., Liang, S., Liu, M., Yi, Y., Mi, Z., Zhang, Y., et al. (2019). Trans-provincial health impacts of atmospheric mercury emissions in China. Nature Communications, 1–12. https://doi.org/10.1038/s41467-019-09080-6
Cheung, W. W. L. (2018). The future of fishes and fisheries in the changing oceans. Journal of Fish Biology. https://doi.org/10.1111/jfb.13558
Cook, A., Pryer, J., & Shetty, P. (2000). The problem of accuracy in dietary surveys. Analysis of the over 65 UK National Diet and Nutrition Survey. Journal of Epidemiology and Community Health. https://doi.org/10.1136/jech.54.8.611
Dutkiewicz, S., Morris, J. J., Follows, M. J., Scott, J., Levitan, O., Dyhrman, S. T., & Berman-frank, I. (2013). Impact of ocean acidification on the structure of phytoplankton communities, 1–19. https://doi.org/10.1038/NCLIMATE2722
Eagles-smith, C. A., Silbergeld, E. K., Basu, N., Bustamante, P., Diaz-barriga, F., Hopkins, W. A., et al. (2018). Modulators of mercury risk to wildlife and humans in the context of rapid global change. Ambio, 47(2), 170–197. https://doi.org/10.1007/s13280-017-1011-x
Giang, A., & Selin, N. E. (2016). Benefits of mercury controls for the United States. Proceedings of the National Academy of Sciences of the United States of America, 113(2), 286–291. https://doi.org/10.1073/pnas.1514395113
Grandjean, A. C. (2012). Dietary Intake Data Collection: Challenges and limitations. Nutrition Reviews. https://doi.org/10.1111/j.1753-4887.2012.00545.x
Grandjean, P., Pichery, C., Bellanger, M., & Budtz-Jorgensen, E. (2012). Calculation of Mercury’s Effects on Neurodevelopment. Environmental Health Perspectives, 120(12), A452. https://doi.org/10.1186/1476-069X-11-53
Griffiths, C., McGartland, A., & Miller, M. (2007). A comparison of the monetized impact of IQ decrements from mercury emissions. Environmental Health Perspectives. https://doi.org/10.1289/ehp.9797
Halwart, M., & Gupta, M. V. (2004). Culture of Fish in Rice Fields. FAO and The WorldFish Center.
Horowitz, H. M., Jacob, D. J., Zhang, Y., DIbble, T. S., Slemr, F., Amos, H. M., et al. (2017). A new mechanism for atmospheric mercury redox chemistry: Implications for the global mercury budget. Atmospheric Chemistry and Physics, 17(10), 6353–6371. https://doi.org/10.5194/acp-17-6353-2017
Karagas, M. R., Choi, A. L., Oken, E., Horvat, M., Schoeny, R., Kamai, E., et al. (2012). Evidence on the human health effects of low-level methylmercury exposure. Environmental Health Perspectives. https://doi.org/10.1289/ehp.1104494
Kocman, D., Wilson, S. J., Amos, H. M., Telmer, K. H., Steenhuisen, F., Sunderland, E. M., et al. (2017). Toward an assessment of the global inventory of present-day mercury releases to freshwater environments. International Journal of Environmental Research and Public Health, 14(2). https://doi.org/10.3390/ijerph14020138
Kwon, S. Y., Selin, N. E., Giang, A., Karplus, V. J., & Zhang, D. (2018). Present and Future Mercury Concentrations in Chinese Rice: Insights From Modeling. Global Biogeochemical Cycles, 32(3), 437–462. https://doi.org/10.1002/2017GB005824
Mozaffarian, D., & Rimm, E. B. (2006). Fish intake, contaminants, and human health evaluating the risks and the benefits. Journal of the American Medical Association. https://doi.org/10.1001/jama.296.15.1885
Pacyna, J. M., Travnikov, O., Simone, F. De, Hedgecock, I. M., Sundseth, K., Pacyna, E. G., et al. (2016). Current and future levels of mercury atmospheric pollution on a global scale. Atmospheric Chemistry and Physics, 16(19), 12495–12511. https://doi.org/10.5194/acp-16-12495-2016
Rice, G. E., & Hammitt, J. K. Economic valuation of human health benefits of controlling mercury emissions from U. S. coal-fired power plants (2005). Boston, MA, USA.
Rice, G. E., Hammitt, J. K., & Evans, J. S. (2010). A probabilistic characterization of the health benefits of reducing methyl mercury intake in the United States. Environmental Science and Technology, 44(13), 5216–5224. https://doi.org/10.1021/es903359u
Rind, D., Lerner, J., Jonas, J., & McLinden, C. (2007). Effects of resolution and model physics on tracer transports in the NASA Goddard Institute for Space Studies general circulation models. Journal of Geophysical Research Atmospheres. https://doi.org/10.1029/2006JD007476
Roman, H. A., Walsh, T. L., Coull, B. A., Dewailly, É., Guallar, E., Hattis, D., et al. (2011). Evaluation of the cardiovascular effects of methylmercury exposures: Current evidence supports development of a dose-response function for regulatory benefits analysis. Environmental Health Perspectives, 119(5), 607–614. https://doi.org/10.1289/ehp.1003012
Rothenberg, S. E., & Feng, X. (2012). Mercury cycling in a flooded rice paddy. Journal of Geophysical Research: Biogeosciences, 117(3), 1–16. https://doi.org/10.1029/2011JG001800
Rothenberg, S. E., Windham-myers, L., & Creswell, J. E. (2014). Rice methylmercury exposure and mitigation : A comprehensive review. Environmental Research, 133, 407–423. https://doi.org/10.1016/j.envres.2014.03.001
Salonen, J. T., Seppänen, K., Nyyssönen, K., Korpela, H., Kauhanen, J., Kantola, M., et al. (1995). Intake of mercury from fish, lipid peroxidation, and the risk of myocardial infarction and coronary, cardiovascular, and any death in Eastern Finnish men. Circulation. https://doi.org/10.1161/01.CIR.91.3.645
Schartup, A. T., Qureshi, A., Dassuncao, C., Thackray, C. P., Harding, G., & Sunderland, E. M. (2018). A Model for Methylmercury Uptake and Trophic Transfer by Marine Plankton. https://doi.org/10.1021/acs.est.7b03821
Schartup, A. T., Colin, P., Qureshi, A., Dassuncao, C., Gillespie, K., Hanke, A., & Sunderland, E. M. (2019). Climate change and overfishing increase neurotoxicant in marine predators. Nature, 572, 648–650. https://doi.org/10.1038/s41586-019-1468-9
Schmidt, J. A., Wang, S., Jacob, D. J., Horowitz, H. M., Hu, L., Sherwen, T., et al. (2016). Modeling the observed tropospheric BrO background: Importance of multiphase chemistry and implications for ozone, OH, andmercury. Journal of Geophysical Research, 1–17. https://doi.org/10.1002/2015JD024229
Schuster, P. F., Schaefer, K. M., Aiken, G. R., Antweiler, R. C., Dewild, J. F., Gryziec, J. D., et al. (2018). Permafrost Stores a Globally Significant Amount of Mercury. Geophysical Research Letters, 45, 1463–1471. https://doi.org/10.1002/2017GL075571
Selin, N. E. (2018). A proposed global metric to aid mercury pollution policy. Science, 360(6389), 607–609. https://doi.org/10.1126/science.aar8256
Selin, N. E., Jacob, D. J., Yantosca, R. M., Strode, S., & Jaegle, L. (2008). Global 3-D land-ocean-atmosphere model for mercury : Present-day versus preindustrial cycles and anthropogenic enrichment factors for deposition, 22(Ii), 1–13. https://doi.org/10.1029/2007GB003040
Smith-Downey, N. V., Sunderland, E. M., & Jacob, D. J. (2010). Anthropogenic impacts on global storage and emissions of mercury from terrestrial soils: Insights from a new global model. Journal of Geophysical Research: Biogeosciences, 115(3), 1–11. https://doi.org/10.1029/2009JG001124
Sokolov, A. P., Stone, P. H., Forest, C. E., Prinn, R., Sarofim, M. C., Webster, M., et al. (2009). Probabilistic forecast for twenty-first-century climate based on uncertainties in emissions (without policy) and climate parameters. Journal of Climate. https://doi.org/10.1175/2009JCLI2863.1
Spadaro, J. V., & Rabl, A. (2008). Global health impacts and costs due to mercury emissions. Risk Analysis, 28(3), 603–613. https://doi.org/10.1111/j.1539-6924.2008.01041.x
Streets, D. G., Zhang, Q., & Wu, Y. (2009). Projections of Global Mercury Emissions in 2050. Environmental Science and Technology, 43, 2983–2988. https://doi.org/10.1021/es802474j
Trasande, L., Landrigan, P. J., & Schechter, C. (2005). Public health and economic consequences of methyl mercury toxicity to the developing brain. Environmental Health Perspectives. https://doi.org/10.1289/ehp.7743
Undeman, E., Brown, T. N., Mclachlan, M. S., & Wania, F. (2018). Who in the world is most exposed to polychlorinated biphenyls ? Using models to identify highly exposed populations OPEN ACCESS Who in the world is most exposed to polychlorinated biphenyls ? Using models to identify highly exposed populations.
UNEP. (2017). The Minamata Convention on Mercury.
Wang, F., Outridge, P. M., Feng, X., Meng, B., Heimbürger-Boavida, L. E., & Mason, R. P. (2019). How closely do mercury trends in fish and other aquatic wildlife track those in the atmosphere? – Implications for evaluating the effectiveness of the Minamata Convention. Science of the Total Environment. https://doi.org/10.1016/j.scitotenv.2019.04.101
Watson, R. A. (2017). Data Descriptor : A database of global marine commercial , small-scale , illegal and unreported fi sheries catch 1950 – 2014, 1–9.
Xue, J., Zartarian, V., Mintz, B., Weber, M., Bailey, K., & Geller, A. (2015). Modeling tribal exposures to methyl mercury from fish consumption. Science of the Total Environment. https://doi.org/10.1016/j.scitotenv.2015.06.070
Zhang, H, Holmes, C. D., & Wu, S. (2016). Impacts of changes in climate , land use and land cover on atmospheric mercury, 141, 230–244. https://doi.org/10.1016/j.atmosenv.2016.06.056
Zhang, Hua, Feng, X., Larssen, T., Qiu, G., & Vogt, R. D. (2010). In inland China, rice, rather than fish, is the major pathway for methylmercury exposure. Environmental Health Perspectives, 118(9), 1183–1188. https://doi.org/10.1289/ehp.1001915
Zhang, Y., Jacob, D. J., Horowitz, H. M., Chen, L., Amos, H. M., Krabbenhoft, D. P., et al. (2016). Observed decrease in atmospheric mercury explained by global decline in anthropogenic emissions. Proceedings of the National Academy of Sciences of the United States of America, 113(3), 526–531. https://doi.org/10.1073/pnas.1516312113
Zhang, Y., Horowitz, H., Wang, J., Xie, Z., Kuss, J., & Soerensen, A. L. (2019). A Coupled Global Atmosphere-Ocean Model for Air-Sea Exchange of Mercury: Insights into Wet Deposition and Atmospheric Redox Chemistry. Environmental Science and Technology, 53(9), 5052–5061. research-article. https://doi.org/10.1021/acs.est.8b06205
Zhang, Y., Soerensen, A. L., Schartup, A. T., & Sunderland, E. M. (2020). A global model for methylmercury formation and uptake at the base of marine food webs. Global Biogeochemical Cycles, 34, 1–44. https://doi.org/10.1029/2019GB006348