[1] Dhillon, P.K., Yeole, B.B., Dikshit, R., Kurkure, A.P., and Bray, F. (2011). Trends in breast, ovarian and cervical cancer incidence in Mumbai, India over a 30-year period, 1976-2005: an age-period-cohort analysis. Br J Cancer 105, 723-730.
[2] Dong, X., Men, X., Zhang, W., and Lei, P. (2014). Advances in tumor markers of ovarian cancer for early diagnosis. Indian J Cancer 51 Suppl 3, e72-76.
[3] Colombo, N., Peiretti, M., Garbi, A., Carinelli, S., Marini, C., Sessa, C., and Group, E.G.W. (2012). Non-epithelial ovarian cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 23 Suppl 7, vii20-26.
[4] Xie, Y.J., Chen, M., and Chen, S.J. (2014). Prediction of pregnancy outcomes with combined ultrasound scanning of yolk sacs and serum CA125 determinations in early threatened abortion. Clin Exp Obstet Gynecol 41, 186-189.
[5] Bussieres-Marmen, S., Hutchins, A.P., Schirbel, A., Rebert, N., Tiganis, T., Fiocchi, C., Miranda-Saavedra, D., and Tremblay, M.L. (2014). Characterization of PTPN2 and its use as a biomarker. Methods 65, 239-246.
[6] Veenstra, C., Karlsson, E., Mirwani, S.M., Nordenskjold, B., Fornander, T., Perez-Tenorio, G., and Stal, O. (2019). The effects of PTPN2 loss on cell signalling and clinical outcome in relation to breast cancer subtype. J Cancer Res Clin Oncol 145, 1845-1856.
[7] Blum, A., Wang, P., and Zenklusen, J.C. (2018). SnapShot: TCGA-Analyzed Tumors. Cell 173, 530.
[8] Vivian, J., Rao, A.A., Nothaft, F.A., Ketchum, C., Armstrong, J., Novak, A., Pfeil, J., Narkizian, J., Deran, A.D., Musselman-Brown, A., et al. (2017). Toil enables reproducible, open source, big biomedical data analyses. Nat Biotechnol 35, 314-316.
[9] Liu, J., Lichtenberg, T., Hoadley, K.A., Poisson, L.M., Lazar, A.J., Cherniack, A.D., Kovatich, A.J., Benz, C.C., Levine, D.A., Lee, A.V., et al. (2018). An Integrated TCGA Pan-Cancer Clinical Data Resource to Drive High-Quality Survival Outcome Analytics. Cell 173, 400-416 e411.
[10] Subramanian, A., Kuehn, H., Gould, J., Tamayo, P., and Mesirov, J.P. (2007). GSEA-P: a desktop application for Gene Set Enrichment Analysis. Bioinformatics 23, 3251-3253.
[11] Tu, Z., Xiong, J., Xiao, R., Shao, L., Yang, X., Zhou, L., Yuan, W., Wang, M., Yin, Q., Wu, Y., et al. (2019). Loss of miR-146b-5p promotes T cell acute lymphoblastic leukemia migration and invasion via the IL-17A pathway. J Cell Biochem 120, 5936-5948.
[12] Subramanian, A., Tamayo, P., Mootha, V.K., Mukherjee, S., Ebert, B.L., Gillette, M.A., Paulovich, A., Pomeroy, S.L., Golub, T.R., Lander, E.S., et al. (2005). Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 102, 15545-15550.
[13] Bindea, G., Mlecnik, B., Tosolini, M., Kirilovsky, A., Waldner, M., Obenauf, A.C., Angell, H., Fredriksen, T., Lafontaine, L., Berger, A., et al. (2013). Spatiotemporal dynamics of intratumoral immune cells reveal the immune landscape in human cancer. Immunity 39, 782-795.
[14] Yu, G., Wang, L.G., Han, Y., and He, Q.Y. (2012). clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS 16, 284-287.
[15] Kim, S.Y., and Volsky, D.J. (2005). PAGE: parametric analysis of gene set enrichment. BMC Bioinformatics 6, 144.
[16] Szklarczyk, D., Gable, A.L., Lyon, D., Junge, A., Wyder, S., Huerta-Cepas, J., Simonovic, M., Doncheva, N.T., Morris, J.H., Bork, P., et al. (2019). STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res 47, D607-D613.
[17] Shi, Y., and Massague, J. (2003). Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell 113, 685-700.
[18] Xu, L. (2006). Regulation of Smad activities. Biochim Biophys Acta 1759, 503-513.
[19] Hallberg, B., and Palmer, R.H. (2016). The role of the ALK receptor in cancer biology. Ann Oncol 27 Suppl 3, iii4-iii15.
[20] Drexler, H.G., Gignac, S.M., von Wasielewski, R., Werner, M., and Dirks, W.G. (2000). Pathobiology of NPM-ALK and variant fusion genes in anaplastic large cell lymphoma and other lymphomas. Leukemia 14, 1533-1559.
[21] Su, F., Ren, F., Rong, Y., Wang, Y., Geng, Y., Wang, Y., Feng, M., Ju, Y., Li, Y., Zhao, Z.J., et al. (2012). Protein tyrosine phosphatase Meg2 dephosphorylates signal transducer and activator of transcription 3 and suppresses tumor growth in breast cancer. Breast Cancer Res 14, R38.
[22] Hahn, S.A., Schutte, M., Hoque, A.T., Moskaluk, C.A., da Costa, L.T., Rozenblum, E., Weinstein, C.L., Fischer, A., Yeo, C.J., Hruban, R.H., et al. (1996). DPC4, a candidate tumor suppressor gene at human chromosome 18q21.1. Science 271, 350-353.
[23] Miyaki, M., and Kuroki, T. (2003). Role of Smad4 (DPC4) inactivation in human cancer. Biochem Biophys Res Commun 306, 799-804.