1 King, S. M. & Sale, W. S. Fifty years of microtubule sliding in cilia. Molecular biology of the cell 29, 698-701, doi:10.1091/mbc.E17-07-0483 (2018).
2 Lishko, P. V. et al. The control of male fertility by spermatozoan ion channels. Annu Rev Physiol 74, 453-475, doi:10.1146/annurev-physiol-020911-153258 (2012).
3 Lin, J. & Nicastro, D. Asymmetric distribution and spatial switching of dynein activity generates ciliary motility. Science 360, doi:10.1126/science.aar1968 (2018).
4 Vernon, G. G. & Woolley, D. M. Basal sliding and the mechanics of oscillation in a mammalian sperm flagellum. Biophys J 87, 3934-3944, doi:10.1529/biophysj.104.042648 (2004).
5 Riedel‐Kruse, I. H., Hilfinger, A., Howard, J. & Jülicher, F. How molecular motors shape the flagellar beat. HFSP journal 1, 192-208 (2007).
6 Winey, M. & O'Toole, E. Centriole structure. Philosophical Transactions of the Royal Society B: Biological Sciences 369, 20130457 (2014).
7 Uzbekov, R. & Prigent, C. Clockwise or anticlockwise? Turning the centriole triplets in the right direction! FEBS Lett 581, 1251-1254 (2007).
8 Loncarek, J. & Bettencourt-Dias, M. Building the right centriole for each cell type. Journal of Cell Biology 217, 823-835 (2018).
9 Avidor-Reiss, T. Rapid Evolution of Sperm Produces Diverse Centriole Structures that Reveal the Most Rudimentary Structure Needed for Function. Cells 7, 67 (2018).
10 Manandhar, G., Simerly, C. & Schatten, G. Centrosome reduction during mammalian spermiogenesis. Curr Top Dev Biol 49, 343-363 (2000).
11 Hauser, H., Ijspeert, A. J., Füchslin, R. M., Pfeifer, R. & Maass, W. Towards a theoretical foundation for morphological computation with compliant bodies. Biol Cybern 105, 355-370, doi:10.1007/s00422-012-0471-0 (2011).
12 Woolley, D. M. Flagellar oscillation: a commentary on proposed mechanisms. Biological reviews of the Cambridge Philosophical Society 85, 453-470, doi:10.1111/j.1469-185X.2009.00110.x (2010).
13 Avidor-Reiss, T., Carr, A. & Fishman, E. L. The sperm centrioles. Mol Cell Endocrinol 518, 110987, doi:10.1016/j.mce.2020.110987 (2020).
14 Fawcett, D. W. & Phillips, D. M. The fine structure and development of the neck region of the mammalian spermatozoon. Anat Rec 165, 153-164, doi:10.1002/ar.1091650204 (1969).
15 Fishman, E. L. et al. A novel atypical sperm centriole is functional during human fertilization. Nature communications 9, 2210 (2018).
16 Cavazza, T. et al. Parental genome unification is highly erroneous in mammalian embryos. bioRxiv, 2020.2008.2027.269779, doi:10.1101/2020.08.27.269779 (2020).
17 Blachon, S., Khire, A. & Avidor-Reiss, T. The origin of the second centriole in the zygote of Drosophila melanogaster. Genetics 197, 199-205, doi:10.1534/genetics.113.160523 (2014).
18 Schneider, I., de Ruijter-Villani, M., Hossain, M. J., Stout, T. A. E. & Ellenberg, J. Non-rodent mammalian zygotes assemble dual spindles despite the presence of paternal centrosomes. bioRxiv, 2020.2010.2016.342154, doi:10.1101/2020.10.16.342154 (2020).
19 Gadelha, H., Gaffney, E. A. & Goriely, A. The counterbend phenomenon in flagellar axonemes and cross-linked filament bundles. Proc Natl Acad Sci U S A 110, 12180-12185, doi:10.1073/pnas.1302113110 (2013).
20 Greenan, G. A., Keszthelyi, B., Vale, R. D. & Agard, D. A. Insights into centriole geometry revealed by cryotomography of doublet and triplet centrioles. eLife 7, e36851 (2018).
21 Le Guennec, M. et al. A helical inner scaffold provides a structural basis for centriole cohesion. Sci Adv 6, eaaz4137, doi:10.1126/sciadv.aaz4137 (2020).
22 Pearson, C. G., Osborn, D. P., Giddings, T. H., Jr., Beales, P. L. & Winey, M. Basal body stability and ciliogenesis requires the conserved component Poc1. The Journal of cell biology 187, 905-920, doi:jcb.200908019 [pii]
10.1083/jcb.200908019 (2009).
23 Steib, E. et al. WDR90 is a centriolar microtubule wall protein important for centriole architecture integrity. eLife 9, e57205, doi:10.7554/eLife.57205 (2020).
24 Ounjai, P., Kim, K. D., Lishko, P. V. & Downing, K. H. Three-dimensional structure of the bovine sperm connecting piece revealed by electron cryotomography. Biology of reproduction 87, 73, doi:10.1095/biolreprod.112.101980 (2012).
25 Zach, F. et al. The retinitis pigmentosa 28 protein FAM161A is a novel ciliary protein involved in intermolecular protein interaction and microtubule association. Hum Mol Genet 21, 4573-4586, doi:10.1093/hmg/dds268 (2012).
26 Lindemann, C. B. A" geometric clutch" hypothesis to explain oscillations of the axoneme of cilia and flagella. Journal of theoretical biology 168, 175-189 (1994).
27 Gadêlha, H., Hernández-Herrera, P., Montoya, F., Darszon, A. & Corkidi, G. Human sperm uses asymmetric and anisotropic flagellar controls to regulate swimming symmetry and cell steering. Science Advances 6, eaba5168 (2020).
28 Babcock, D. F., Wandernoth, P. M. & Wennemuth, G. Episodic rolling and transient attachments create diversity in sperm swimming behavior. BMC biology 12, 67 (2014).
29 Lesich, K. A., dePinho, T. G., Dionne, B. J. & Lindemann, C. B. The effects of Ca2+ and ADP on dynein switching during the beat cycle of reactivated bull sperm models. Cytoskeleton 71, 611-627 (2014).
30 Nicander, L. & Bane, A. Fine structure of boar spermatozoa. Cell and Tissue Research 57, 390-405 (1962).
31 Leung, M. R. et al. The multi-scale architecture of mammalian sperm flagella and implications for ciliary motility. bioRxiv, 2020.2011.2018.388975, doi:10.1101/2020.11.18.388975 (2020).
32 Lindemann, C. B. & Lesich, K. A. Functional anatomy of the mammalian sperm flagellum. Cytoskeleton (Hoboken, N.J.) 73, 652-669, doi:10.1002/cm.21338 (2016).
33 Brokaw, C. J. Bend propagation by a sliding filament model for flagella. Journal of Experimental Biology 55, 289-304 (1971).
34 Woolley, D. M., Carter, D. A. & Tilly, G. N. Compliance in the neck structures of the guinea pig spermatozoon, as indicated by rapid freezing and electron microscopy. J Anat 213, 336-341, doi:10.1111/j.1469-7580.2008.00919.x (2008).
35 Ishijima, S. & Hamaguchi, Y. Relationship between direction of rolling and yawing of golden hamster and sea urchin spermatozoa. Cell Struct Funct 17, 319-323, doi:10.1247/csf.17.319 (1992).
36 Ishijima, S., Hamaguchi, M. S., Naruse, M., Ishijima, S. & Hamaguchi, Y. Rotational movement of a spermatozoon around its long axis. Journal of experimental biology 163, 15-31 (1992).
37 Lesich, K. A., Pelle, D. W. & Lindemann, C. B. Insights into the mechanism of ADP action on flagellar motility derived from studies on bull sperm. Biophysical journal 95, 472-482 (2008).
38 Kerns, K., Zigo, M., Drobnis, E. Z., Sutovsky, M. & Sutovsky, P. Zinc ion flux during mammalian sperm capacitation. Nature communications 9, 1-10 (2018).
39 Phillips, D. M. Insect sperm: their structure and morphogenesis. The Journal of cell biology 44, 243-277 (1970).
40 Fawcett, D. W. The mammalian spermatozoon. Dev Biol 44, 394-436 (1975).
41 Schatten, H., Schatten, G., Mazia, D., Balczon, R. & Simerly, C. Behavior of centrosomes during fertilization and cell division in mouse oocytes and in sea urchin eggs. Proc Natl Acad Sci U S A 83, 105-109, doi:10.1073/pnas.83.1.105 (1986).
42 Avidor-Reiss, T., Mazur, M., Fishman, E. L. & Sindhwani, P. The Role of Sperm Centrioles in Human Reproduction – The Known and the Unknown. Frontiers in Cell and Developmental Biology 7, doi:10.3389/fcell.2019.00188 (2019).