[1] M. A. Van Spronsen, J. W. M. Frenken, and I. M. N. Groot, “Observing the oxidation of platinum,” Nat. Commun., vol. 8, no. 1, Dec. 2017, doi: 10.1038/s41467-017-00643-z.
[2] U. Hejral, P. Müller, O. Balmes, D. Pontoni, and A. Stierle, “Tracking the shape-dependent sintering of platinum-rhodium model catalysts under operando conditions,” Nat. Commun., vol. 7, no. 1, pp. 1–8, Mar. 2016, doi: 10.1038/ncomms10964.
[3] F. Podjaski et al., “Rational strain engineering in delafossite oxides for highly efficient hydrogen evolution catalysis in acidic media,” Nat. Catal., vol. 3, no. 1, pp. 55–63, Jan. 2020, doi: 10.1038/s41929-019-0400-x.
[4] J. Cao et al., “In situ observation of oscillatory redox dynamics of copper,” Nat. Commun., vol. 11, no. 1, Dec. 2020, doi: 10.1038/s41467-020-17346-7.
[5] S. B. Vendelbo et al., “Visualization of oscillatory behaviour of Pt nanoparticles catalysing CO oxidation,” Nat. Mater., vol. 13, no. 9, pp. 884–890, 2014, doi: 10.1038/nmat4033.
[6] J. Zetterberg et al., “Spatially and temporally resolved gas distributions around heterogeneous catalysts using infrared planar laser-induced fluorescence,” Nat. Commun., vol. 6, no. May, pp. 1–8, 2015, doi: 10.1038/ncomms8076.
[7] K. F. Kalz et al., “Future Challenges in Heterogeneous Catalysis: Understanding Catalysts under Dynamic Reaction Conditions,” ChemCatChem, vol. 9, no. 1, pp. 17–29, Jan. 2017, doi: 10.1002/cctc.201600996.
[8] H. Bluhm, M. Hävecker, A. Knop-Gericke, M. Kiskinova, R. Schlögl, and M. Salmeron, “In situ X-ray photoelectron spectroscopy studies of gas-solid interfaces at near-ambient conditions,” MRS Bull., vol. 32, no. 12, pp. 1022–1030, 2007, doi: 10.1557/mrs2007.211.
[9] S. Blomberg, J. Zhou, J. Gustafson, J. Zetterberg, and E. Lundgren, “2D and 3D imaging of the gas phase close to an operating model catalyst by planar laser induced fluorescence,” Journal of Physics Condensed Matter, vol. 28, no. 45. Institute of Physics Publishing, p. 453002, Sep. 13, 2016, doi: 10.1088/0953-8984/28/45/453002.
[10] E. Lundgren et al., “Novel in Situ Techniques for Studies of Model Catalysts,” Acc. Chem. Res., vol. 50, no. 9, pp. 2326–2333, Sep. 2017, doi: 10.1021/acs.accounts.7b00281.
[11] B. L. M. Hendriksen, S. C. Bobaru, and J. W. M. Frenken, “Looking at heterogeneous catalysis at atmospheric pressure using tunnel vision,” Top. Catal., vol. 36, no. 1–4, pp. 43–54, Aug. 2005, doi: 10.1007/s11244-005-7861-7.
[12] S. Blomberg et al., “In situ x-ray photoelectron spectroscopy of model catalysts: At the edge of the gap,” Phys. Rev. Lett., vol. 110, no. 11, Mar. 2013, doi: 10.1103/PhysRevLett.110.117601.
[13] M. A. Van Spronsen, J. W. M. Frenken, and I. M. N. Groot, “Surface science under reaction conditions: CO oxidation on Pt and Pd model catalysts,” Chemical Society Reviews, vol. 46, no. 14. Royal Society of Chemistry, pp. 4347–4374, Jul. 21, 2017, doi: 10.1039/c7cs00045f.
[14] B. L. M. Hendriksen, S. C. Bobaru, and J. W. M. Frenken, “Oscillatory CO oxidation on Pd(1 0 0) studied with in situ scanning tunneling microscopy,” Surf. Sci., vol. 552, no. 1–3, pp. 229–242, Mar. 2004, doi: 10.1016/j.susc.2004.01.025.
[15] R. Van Rijn et al., “Surface structure and reactivity of Pd(100) during CO oxidation near ambient pressures,” Phys. Chem. Chem. Phys., vol. 13, no. 29, pp. 13167–13171, Aug. 2011, doi: 10.1039/c1cp20989b.
[16] J. Gustafson et al., “High-energy surface x-ray diffraction for fast surface structure determination,” Science (80-. )., vol. 343, no. 6172, pp. 758–761, Feb. 2014, doi: 10.1126/science.1246834.
[17] F. Gao, Y. Wang, Y. Cai, and D. W. Goodman, “CO oxidation on pt-group metals from ultrahigh vacuum to near atmospheric pressures. 2. palladium and platinum,” J. Phys. Chem. C, vol. 113, no. 1, pp. 174–181, Jan. 2009, doi: 10.1021/jp8077985.
[18] J. Gustafson et al., “The Role of Oxides in Catalytic CO Oxidation over Rhodium and Palladium,” ACS Catal., vol. 8, no. 5, pp. 4438–4445, May 2018, doi: 10.1021/acscatal.8b00498.
[19] J. F. Weaver, J. Choi, V. Mehar, and C. Wu, “Kinetic coupling among metal and oxide phases during CO oxidation on partially reduced PdO(101): Influence of gas-phase composition,” ACS Catal., vol. 7, no. 10, pp. 7319–7331, 2017, doi: 10.1021/acscatal.7b02570.
[20] V. Mehar et al., “Understanding the Intrinsic Surface Reactivity of Single-Layer and Multilayer PdO(101) on Pd(100),” ACS Catal., vol. 8, no. 9, pp. 8553–8567, Sep. 2018, doi: 10.1021/acscatal.8b02191.
[21] H. Siegbahn, “Electron Spectroscopy for Chemical Analysis of Liquids and Solutions,” 1985. Accessed: Dec. 23, 2020. [Online]. Available: https://pubs.acs.org/sharingguidelines.
[22] P. Amann et al., “A high-pressure x-ray photoelectron spectroscopy instrument for studies of industrially relevant catalytic reactions at pressures of several bars,” Rev. Sci. Instrum., vol. 90, no. 10, p. 103102, Oct. 2019, doi: 10.1063/1.5109321.
[23] V. R. Fernandes et al., “Reversed Hysteresis during CO Oxidation over Pd75Ag25(100),” ACS Catal., vol. 6, no. 7, pp. 4154–4161, Jul. 2016, doi: 10.1021/acscatal.6b00658.
[24] S. Blomberg et al., “Combining synchrotron light with laser technology in catalysis research,” J. Synchrotron Radiat., vol. 25, no. 5, pp. 1389–1394, 2018, doi: 10.1107/S1600577518010597.
[25] J. Zhou, S. Blomberg, J. Gustafson, E. Lundgren, and J. Zetterberg, “Simultaneous Imaging of Gas Phase over and Surface Reflectance of a Pd(100) Single Crystal during CO Oxidation,” J. Phys. Chem. C, vol. 121, no. 42, pp. 23511–23519, Oct. 2017, doi: 10.1021/acs.jpcc.7b08108.
[26] M. Shipilin et al., “Transient Structures of PdO during CO Oxidation over Pd(100),” J. Phys. Chem. C, vol. 119, no. 27, pp. 15469–15476, Jul. 2015, doi: 10.1021/acs.jpcc.5b04400.
[27] B. L. M. Hendriksen et al., “The role of steps in surface catalysis and reaction oscillations,” Nat. Chem., vol. 2, no. 9, pp. 730–734, Sep. 2010, doi: 10.1038/nchem.728.
[28] Z. Novotny et al., “Kinetics of the Thermal Oxidation of Ir(100) toward IrO2 Studied by Ambient-Pressure X-ray Photoelectron Spectroscopy,” J. Phys. Chem. Lett., vol. 11, no. 9, pp. 3601–3607, May 2020, doi: 10.1021/acs.jpclett.0c00914.