Background: The effective treatment and prognosis prediction of bladder cancer(BLCA) remains a medical problem. Ferroptosis is an iron-dependent form of programmed cell death. Ferroptosis are closely related to tumor occurrence and progression, but the prognostic value of ferroptosis-related genes (FRGs) in BLCA remains to be further clarified. In this study, we identified a FRGs signature with potential prognostic value for patients with BLCA.
Methods: The corresponding clinical data and the mRNA expression profile of BLCA patients were downloaded from The Cancer Genome Atlas (TCGA). Univariate Cox regression was used to extract FRGs related to survival time, Cox regression model was applied to construct a multigene signature. Both principal component analysis (PCA) and single-sample gene set enrichment analysis (ssGSEA) were performed for functional annotation.
Results: Clinical traits were combined with FRGs, so that 15 prognostic-related FRGs were identified by Cox regression. High expression of CISD1, GCLM, CRYAB, SLC7A11, TFRC, ACACA, ZEB1, SQLE, FADS2, ABCC1, G6PD and PGD are related to poor survival rates of BLCA patients. Multivariate Cox regression constructed a prognostic model with 7 FRGs and divided patients into two risk groups. Compared with the low-risk group, the overall survival(OS) of patients in the high-risk group was significantly lower (P <0.001). In multivariate regression analysis, the risk score was shown to be an independent predictor of OS (HR> 1, P <0.01). ROC curve analysis verified the predictive ability of the model. In addition, the two risk groups displayed different immune statuses in the ssGSEA and different distributed patterns in PCA.
Conclusion: Our research suggests that a new gene model related to ferroptosis can be applied for the prognosis prediction of BLCA. Targeting FRGs may be a treatment option for BLCA.