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Abstract This paper extends a multiple interactions type ecological system
by incorporating both symmetric and asymmetric dispersal mechanisms. Us-
ing this partial differential equations model, we numerically show different
spatio-temporal dynamics of interacting species. We then examine the dynam-
ical behaviours of the system for a wide range of parameter values, thereby
permitting an investigation of the interplay between local dynamics due to
mutualist-resource-competitor-exploiter interactions on the one hand and dis-
persal rate and its (a)symmetry, on the other. To do this, a co-dimension one
bifurcation analysis is performed using the magnitude of competitor and re-
source species interactions under various dispersal scenarios. In the absence
of dispersal, our analysis by varying the competitive pressure uncovers some
bifurcational changes in dynamics such as supercritical Hopf and transcritical
bifurcations. The interactions between these two local bifurcations result in
intriguing outcomes, namely coexistence steady states, stable limit cycles and
alternative stable states. Inclusion of low (or moderate) levels of symmetric
dispersal into the system modifies the response of this ecological community
towards the change in competitive pressure and mediates distinct multiple
species coexistence steady states. As symmetric dispersal increases to rapid
migration levels, a greater stabilising impact on the dynamics of the system is
observed and this situation enhances the likelihood of species diversity. In the
case of asymmetric dispersal, alternative stable states phenomenon has been
found to be more pronounced due to the emergence of different bistable attrac-
tors, which include two coexisting stable limit cycles. Owing to this reason,
we predict sensitivity of dynamics to small perturbations in initial densities
of mutualist-resource-competitor-exploiter species. It is also unveiled that the
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(in)direct effects exerted by resource species can interact with dispersal asym-
metry to engender subcritical Hopf, period-doubling and limit point bifurca-
tions of cycles: these phenomena also exhibit complex dynamical behaviours
such as alternative stable states or unstable dynamics, which can stabilise or
destabilise this multi-species community.

Keywords Partial differential equations · Hopf bifurcation · Transcritical
bifurcation · Period-doubling bifurcation · Saddle-node bifurcation · Numerical
bifurcation analysis

1 Introduction

The dispersal dynamics has received much attention in mathematical biol-
ogy and ecology [1–4]. The stabilisation of multiple species communities by
dispersal plays a crucial role in reducing the extinction of vital species from
the ecosystem and supporting the recolonisation process of rare species [5–9].
Several studies have illustrated the importance of symmetric [10,11] and asym-
metric [12–16] dispersal strength in (di)stabilising multiple species system. The
stability of this system where based on the strength of dispersal among inter-
acting species. However, these studies focus on two habitat patches and in
real life, more than two habitat patches interacts. More importantly, it remain
unknown what effect do symmetric and asymmetric dispersal strength have
on multiple interactions type community.

Several studies have described population oscillation as a consequence of
antagonistic interactions and affect the change in species fitness [17,18]. The
dispersal strength determines the synchronisation of the multi-species commu-
nities across space [19,20]. Spatial synchronisation reduces the positive effects
of dispersal in stabilising multi-species system with population oscillation [21,
7]. There are conflicting reports on the stabilisation effects of dispersal on
multi-species communities. For instance, Hudson and Cattadori [22] report
dispersal as a sword with double-edge, i.e., it can have both synchronisation
and stabilising effects on multiple species communities. Some theoretical stud-
ies report that the synchronisation effects of dispersal destabilise (i.e., affects
species persistence and coexistence) multi-species ecosystem [23,24]. Also, sev-
eral theoretical and experimental studies report the effects of dispersal on com-
munity stabilisation (i.e., either stabilising, destabilising or no-effects) [25–27].
An essential ecological question is what effects do the interplay between local
dispersal and competition have on the community stabilisation and species
coexistence mechanisms in a multiple interactions type model?.

Competition is a vital biotic interaction among interacting species in the
natural ecosystem [28]. The Lotka-Volterra competition model form the ba-
sis of competition among interacting species in the ecosystem [29,30]. In this
model, species coexistence is possible if and only if the intraspecific competition
is stronger than interspecific competition [31–33]. However, species coexistence



Title Suppressed Due to Excessive Length 3

is not possible if the interspecific competition is stronger than the intraspecific
competition (i.e., ”competitive exclusion principle occur”) [34]. However, this
situation is paradoxical as species coexistence are observed in nature. Hence
the ecological question, what mechanisms allow stabilisation of multi-species
communities and species coexistence in a multiple interactions type system?
One possible way is through the interplay between multiple biotic interactions
and dispersal. Kondoh [35] report that multiple interactions type model pro-
vide a good framework for understanding multi-species communities. Some
studies report that there is a synergistic relationship between species diversity
and interactions type [36–38].

Simulation studies of multiple interactions type model show some complex
dynamical behaviours (e.g., chaotic dynamics and oscillations) [39]. In another
study of the four-species system, dispersal mechanisms influence the popula-
tion dynamics of the interacting species in the communities [40]. Shabunin
[41] report that species interactions strength and distinct dispersal mecha-
nisms induce various amplitude of cycles in the general community structure.
Given these divergent views, we investigate the combined effects of symmetric,
asymmetric dispersal and competition on multiple interactions type system.
Specifically, it remains unknown what effects symmetric, asymmetric dispersal
and competition has on the coexistence dynamics of multiple interactions type
system.

To address this knowledge gap, we extend the ecological system of [42]
by incorporating local dispersal mechanisms. This incorporation of dispersal
mechanisms transforms nonlinear ordinary differential equations into the sys-
tem of nonlinear partial differential (PDE). We employ numerical simulations
and bifurcation analysis techniques to explore the joint effects of local dis-
persal and its (a)symmetry together with distinct biotic interactions on the
dynamics of this ecological model.

2 Model description

We employ a system of PDE for the densities X(x, t), W (x, t), Y (x, t) and
Z(x, t) in one-dimension 0 ≤ x ≤ 1 [42–44]:

∂X
∂t = X

(
rX −X − βW − aY + uZ

hz+Z

)
+DX

∂2X
∂x2 ,

∂W
∂t = W (rW −W − αX) +DW

∂2W
∂x2 ,

∂Y
∂t = Y (gaX − d) +DY

∂2Y
∂x2 ,

∂Z
∂t = Z

(
rZ − Z + vX

hx+X

)
+DZ

∂2Z
∂x2 .

(1)

where X, W , Y , Z are the time-dependent population densities of resource,
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competitor, exploiter and mutualist species, respectively. The term rX is the
growth rate of the resource species; rW is the growth rate of the competitor
species; rZ is the growth rate of the mutualist species; α and β represent the
competition strength; a represents the rate at which the exploiter captures the
resource species; g represents the conversion efficiency; d represents the death
rate of the exploiter; u and v represent the benefits from the mutualistic in-
teractions; hX and hZ represent the half-saturation constant. The strength of
mutualist species self-regulation is set to unity for simplicity. The system (1)
is a spatial extension of the multiple interactions type model [42]. In general,
the system of ordinary differential equations (ODE) becomes systems of PDE
with the addition of the diffusion term. The term Di (i = X,W, Y, Z) repre-
sents the local dispersal strength along spatial domain x. We assume distinct
dispersal strength to reflect on the dynamics of multi-species. Also, we apply
zero-flux (or Neumann) boundary conditions for each of the species (i.e., no
movement can occur across the boundaries):

DX
∂X(0,t)

∂x = DX
∂X(1,t)

∂x = 0,

DW
∂W (0,t)

∂x = DW
∂W (1,t)

∂x = 0,

DY
∂Y (0,t)

∂x = DY
∂Y (1,t)

∂x = 0,

DZ
∂Z(0,t)

∂x = DZ
∂Z(1,t)

∂x = 0.

(2)

While there are several boundary conditions (e.g., Dirichlet, zero-flux, pe-
riodic) [45–49] that can be used in modelling natural ecosystems, we have
employed zero-flux boundary conditions primarily because it is ecologically a
more realistic choice, which mimics the island biogeography scenario where
the interacting species cannot escape from this isolated (or closed) commu-
nity. Therefore, the local dynamics and species diversity are merely affected
by different interaction types (e.g., competition, exploitation and mutualism)
and also dispersal process between neighbouring habitats, which is the main
focus of this work. This kind of boundary condition is also chosen to emphasise
parallel with other ecological and theoretical studies [43,44,50,51], which have
also used zero-flux boundary conditions to model their biological populations.
This certainly provides an advantage to compare (and contrast) our findings
with these published results, together with allowing us to extend previous
knowledge and highlight the novelty of the work in light of previous studies.
Indeed, we have made a deliberate choice to consider Neumann boundary con-
ditions as shown in equations (2), and we acknowledge that other boundary
conditions such as periodic boundary can be employed to avoid introducing
boundary effects. Additionally, the spatial domain x can also be extended
to larger domain so as to eliminate these effects. Based on the preliminary
analysis conducted, we have tried to eliminate these effects in our simulation
before and we seen qualitatively similar dynamics to those observed in the
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findings of this work. One of the plausible reasons between the similarity in
qualitative behaviour might be due to the ecological system considered here is
spatially-homogeneous. Consistent with the ecological mid-domain effect (i.e.,
increasing overlap of species ranges towards the center of an ecosystem do-
main) [52], we also focus our analysis on the dynamical behaviours near the
central regions (which is further away from the boundaries of spatial domain);
thus, we do not expect to observe any noticeable difference between the results
with (e.g., using zero-flux) and without (e.g., using periodic) boundary effects.

3 Numerical Method

To solve equations (1) with the boundary conditions defined in equations (2),
we use the method of lines. This numerical method is implemented in MAT-
LAB and it provides a good platform for solving systems of PDE in both
spatial variable x and time t [53]. Using the method of line, the 0 ≤ x ≤ 1
spatial domain is divided into meshes with M + 1 equal points with xi = ih
for i = 0, 1, ...,M . The central difference approximation is used to replace the
spatial derivative in equations (1):

∂2X
∂x2 = Xi+1−2Xi+Xi−1

h2 ,

∂2W
∂x2 = Wi+1−2Wi+Wi−1

h2 ,

∂2Y
∂x2 = Yi+1−2Yi+Yi−1

h2 ,

∂2Z
∂x2 = Zi+1−2Zi+Zi−1

h2 .

(3)

Further, the zero-flux boundary conditions equations (2) are encoded into
this numerical scheme using the finite difference approximation. The resulting
transformation leads to a 4(N + 1) systems of ODE, one for each species
across spatial locations x. Standard ODE solver, ode15s, is employed to solve
the resulting system of ODE for t = 1000. The mesh size h = 0.09 is used
in the numerical simulation. Similarly, for numerical simulation in XPPAUT,
we also discretised model (1) using the method of lines where the PDE is
transformed into a large system ODE, and the resulting system is solved using
cvode solver for t = 1000. Furthermore, we also employed AUTO to continue
the steady-state, in which case we tracked the stable, unstable and bifurcation
points that emerge in this ecological system as the parameters are varied [54].
It is also checked that the numerical results are insensitive to a reduction
in grid spacing (i.e., as the magnitude of different finite points is increased).
The parameter values used in the numerical simulation are defined in Table
1, which are motivated by the ecological studies of [42,43]. For the stability
analysis of the model in the absence of dispersal (D = 0), interested readers
are referred to [55].
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Table 1: Parameter values

Parameter Definition Values

rX The intrinsic growth rate of resource species 1
rW The intrinsic growth rate of competitor species 1
rZ The intrinsic growth rate of the mutualist species 1
u Maximum benefit of the mutualistic interaction 3
v Maximum benefit of the mutualistic interaction 2
a Capture rate 2.8
g Conversion efficiency of the exploiter species 0.25
d Death rate of the exploiter 0.05
hX Half saturation constant of the hyperbolic functional response 1
hZ Half saturation constant of the hyperbolic functional response 1
β Competitive strength of the competitor species 0.7 (Vary)
α Competitive strength of the resource species 0.2 (Vary)
DX Dispersal strength of resource species 0.005
DW Dispersal strength of competitor species 0.003
DY Dispersal strength of exploiter species 0.0027
DZ Dispersal strength of mutualist species 0.004

4 Results

Using this multiple interactions type system with parameter values as spec-
ified in Table 1, we first numerically show different spatio-temporal dynam-
ics of interacting species. For instance, the existence of multi-species coex-
istence steady state (Figure 1 and Figure 3) and stable limit cycles (Figure
2 and Figure 4) are illustrated for different choices of initial condition (i.e.,
represented by distinct colour trajectories). For distinct initial densities, the
system dynamics converge to an ecologically feasible state and this demon-
strates the stability property of the attractor under consideration. We also
discover that multiple coexistence state outcomes and oscillatory dynamics are
the inherent characteristics of this ecological system consisting of mutualist-
resource-competitor-exploiter species. In the following subsections, we examine
the dynamical behaviours of the system for a wide range of parameter values,
thereby permitting an investigation of the interplay between local dynamics
due to different interaction types on the one hand, and dispersal rate and its
(a)symmetry, on the other.

4.1 Bifurcational changes in dynamics mediated by competitor species under
distinct dispersal scenarios

Since one of the goals of this work is to improve our understanding of how
competitive strength and dispersal process affect biodiversity of species in a
complex ecological system, we perform a co-dimension one bifurcation analysis
as parameter β (i.e., the strength of competitor species) varies under various
dispersal scenarios. These findings are illustrated in Figure 5 where we consider
no-dispersal case (Figure 5 (a)), symmetric (Figure 5 (b)-(c)) and asymmetric
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Fig. 1: Global stability of the system for different initial conditions. Initial
population densities: X(x, t = 0) = 0.9, W (x, t = 0) = 0.7, Y (x, t = 0) = 0.6,
Z(x, t = 0) = 0.8. The diagram is plotted using MATLAB package and the
parameter values as in Table 1.

(Figure 5 (d)) dispersal processes. We compare the outcomes of these different
dispersal scenarios to examine how dispersal process interacts with competitive
dynamics in this mutualist-resource-competitor-exploiter system.

In the absence of dispersal (D = 0), Figure 5 (a) shows the dynamical
behaviour of this multi-species system as competitive strength, β, changes.
There occur some threshold values of β corresponding to supercritical Hopf
bifurcation (i.e., HSB : red point) and transcritical bifurcations (i.e., TB1 and
TB2: black points). The existence of some branches of steady states is also
observed, particularly unstable (black curves) and stable (red, yellow and blue
curves) steady states. As β changes, the emergence of different stable attractors
are realised: (i) four-species steady-state (red curve) i.e., when β < HSB ; (ii)
bistable outcomes between three- (yellow curve) and two- (blue curve) species
steady states i.e., when TB2 < β < TB1; (iii) two-species (blue curve) steady
state i.e., when β > TB1. When HSB < β < TB2, oscillatory behaviour
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Fig. 2: The existence of limit cycle dynamics for distinct choice of initial con-
dition. Initial population densities: X(x, t = 0) = 0.9, W (x, t = 0) = 0.7,
Y (x, t = 0) = 0.6, Z(x, t = 0) = 0.8. The diagram is plotted using MATLAB
package and the parameter values as in Table 1.

(green dots) emerges with population fluctuations in this four-species system
are observed; in this case, stable limit cycles appear with all steady states of the
system become unstable. Due to this reason, the trajectories do not converge
to any steady state as it converges to a stable limit cycle from positive initial
densities.

Next, we establish the effects of symmetric dispersal process in this multi-
species model, as demonstrated by Figure 5 (b). Inclusion of low (or moder-
ate) levels of symmetric dispersal (e.g., D = 0.0027) into the system modifies
the response of this ecological community towards the change in competitive
pressure and mediates distinct multiple species coexistence steady states: (i)
four-species steady state (red curve); (ii) three-species steady state (yellow
curve); (iii) two-species steady state (blue curve). While the occurrences of
Hopf bifurcation and oscillatory dynamics are not evident in this case, we ob-
serve that transcritical bifurcation plays an important factor in determining
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(a) (b)

(c) (d)

Fig. 3: Spatio-temporal diagram of the system with distinct dispersal strength
i.e., DX = 0.005, DW = 0.003, DY = 0.0027 and DZ = 0.004. Initial pop-
ulation densities: X(x, t = 0) = 0.9, W (x, t = 0) = 0.7, Y (x, t = 0) = 0.6,
Z(x, t = 0) = 0.8. The diagrams are plotted using MATLAB ode15s solver
and the parameter values as in Table 1.

the survival (and exclusion) of different interacting species in this multiple
interactions type system. It is also discovered that the strength of multiple
interactions type arising from distinct ecological populations such as resource,
competitor and exploiter species is amplified in the presence of dispersal, which
can weaken the chance of species survival in this ecological system.

An increased in symmetric dispersal level (e.g., D = 0.005) leads to a
greater stabilising impact on the dynamics of the system, as shown by Figure
5 (c). It is observed that rapid dispersal process between interacting species
shifts the critical values of competitive pressure (TB1 and TB2) to higher
thresholds and promotes more outcomes with multiple species coexistence
(compare Figure 5 (c) with Figure 5 (b)); for example, the four-species co-
existence steady state (red curve) occurs at more values of β, which enhances
the likelihood of species diversity. As the dispersal rate increased, the onset of
oscillatory dynamics through Hopf bifurcations (HSB) are observed again. It is
also realised that there are two small ranges of bistability characterised by the
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(a) (b)

(c) (d)

Fig. 4: Spatio-temporal diagram of the system in the absence of dispersal (i.e.,
DX = DW = DY = DZ = 0. Initial population densities: X(x, t = 0) = 0.9,
W (x, t = 0) = 0.7, Y (x, t = 0) = 0.6, Z(x, t = 0) = 0.8. The diagrams are
plotted using MATLAB ode15s solver and the parameter values as in Table 1.

coexistence of: (i) a stable steady states and a stable limit cycle; and (ii) two
stable steady states. These onset of sustained oscillations and bistability phe-
nomena have been seen more prominently in our extensive simulations (data
not shown) with higher rates of migration than shown in Figure 5 (c). This
observation can be explained by the fact that increasing rates of symmetric
dispersal between populations of resource, competitor, exploiter and mutual-
ist species modify its local interactions such that the bifurcational changes in
dynamics occur under relatively moderate ranges of competitive pressure (β),
compared to the finding with low dispersal levels.

In the case of asymmetric dispersal (Figure 5 (d)), qualitatively similar
dynamical behaviours are seen for certain values of competitive pressure (β).
However, unlike in the symmetric dispersal cases (Figure 5 (b)-(c)), the al-
ternative stable states phenomenon has been found to be more pronounced
under some medium ranges of β. Apart from bistability outcomes between
different stable steady states and steady state-limit cycle attractors, we ob-
serve two coexisting stable limit cycles that occur due to asymmetry in dis-
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persal rates. In this case, the amplitude of the fluctuations in population size
and also species distributions differ, as revealed by inspection of our bifur-
cation diagram. This situation can induce uncertainties in the predictions of
the long-term species distributions since the outcomes are determined by ini-
tial abundances of species. As a consequence of alternative stable states, we
predict sensitivity of dynamics to small perturbations so that slightly distinct
initial densities of mutualist-resource-competitor-exploiter species may lead
to several different outcomes of community compositions. Additionally, this
destabilising effect can also be ameliorated by the degree of asymmetry in
dispersal rates and also the effects of (in)direct interactions from the resource
species. This issue warrants further investigation and is the subject of our
analysis in the next section.

4.2 Bifurcational changes in dynamics due to (in)direct interactions induced
by the resource species and asymmetric dispersal

Based on our analysis, the community compositions of this ecological system
are affected by interactions between dispersal process (in terms of strength and
asymmetry) and local dynamics induced by the competitor species. The salient
features of this multiple interactions type model are realised under asymmetric
dispersal scenario and we hypothesised that the dynamical behaviours of the
model would also be affected by the effects of (in)direct interactions mediated
by the resource species. In this ecological system, the resource species shares a
mutualist, a competitor and an exploiter. Thus, the presence of this species is
important as it would provide a balance between mutualistic and antagonistic
interactions (e.g., competition and exploiter) at the autotrophic level. To ex-
amine how the (in)direct effects exerted by this species interact with dispersal
asymmetry, we performed bifurcation analysis using the strength of interac-
tions of the resource species (α) and the result is shown in Figure 6. In the
presence of asymmetric dispersal levels, we discover rich dynamical behaviours,
which can stabilise or destabilise this multi-species community as the magni-
tude of α changes. In particular, the appearances of two supercritical Hopf
bifurcations (HSB), a subcritical Hopf bifurcation (HB), a period-doubling
bifurcations (PD) and numerous limit point bifurcations of cycles (SNBC)
are uncovered through our bifurcation analysis. This part of the finding re-
veals interesting global dynamics where stable limit cycles (emanated from
the HSB bifurcations) alternate with unstable ones (emanated from the HB,
PD and various SNBC bifurcations) as the strength of resource species varies.
The implications of this finding are interesting because, although alternative
states are common in the multiple interaction types models, they are usually
stable, whereas our finding shows that there can be alternative stable or un-
stable states if the asymmetric dispersal strength is considered. In this case,
the fate of interacting species can fall into a stable steady state or a limit cycle
depending on the initial abundances.
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(a) (b)

(c) (d)

Fig. 5: Co-dimension one bifurcation analysis using β as the bifurcation pa-
rameter. (a) without dispersal (D = 0), (b) with symmetric dispersal strength
(i.e., DX = DW = DY = DZ = 0.0027), (c) with symmetric dispersal strength
(i.e., DX = DW = DY = DZ = 0.005 and (d) with asymmetric dispersal
strength (i.e., DX = 0.005, DW = 0.003, DY = 0.0027 and DZ = 0.004).
Four species stable (red lines), three species stable (yellow lines), two species
stable (blue lines) and stable limit cycles (black lines). Red dots represent
supercritical Hopf bifurcation and black dots represent transcritical bifurca-
tion. Initial species population densities: X(x, t = 0) = 0.9, W (x, t = 0) = 0.7,
Y (x, t = 0) = 0.6, Z(x, t = 0) = 0.8. The diagrams are plotted using XPPAUT
package and the parameter values as in Table 1.

5 Discussion and Ecological Implications

In this work, we have extended a multiple interactions type system [42] by in-
corporating spatial dispersal process. We examined the dynamical behaviours
of the system for a realistic range of parameter values to demonstrate the gen-
erality of our ecological observations. This also permit us to investigate the
interplay between local dynamics induced by the interactions of mutualist-
resource-competitor-exploiter species on the one hand, and dispersal rate and
its (a)symmetry, on the other hand. Overall, our findings reveal that the na-
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Fig. 6: Co-dimension one bifurcation analysis as the density of species varies
against α in the presence of asymmetric dispersal. Initial population densities:
X(x, t = 0) = 0.9, W (x, t = 0) = 0.7, Y (x, t = 0) = 0.6, Z(x, t = 0) =
0.8. The dispersal strength are : DX = 0.005, DW = 0.003, DY = 0.0027
and DZ = 0.004. The diagram is plotted using XPPAUT package and the
parameter values as in Table 1.

ture of direct and indirect interactions between interacting species, as well
as complex ecological dynamics engendered, depend on the (a)symmetry in
dispersal rates and the magnitude of interaction strengths among species.

We also discover the stabilising, and occasionally destabilising, effects of
dispersal process on the dynamics of multiple interactions type system. These
double-edged sword effects of dispersal [56] have also been pointed out in
previous studies [57–59,9,60,61] using metapopulation models, and are again
demonstrated by our partial differential equations (PDE) system. Given this
consistency, we propose that the (de)stabilising effects of dispersal process
seem to be robust to changes in models specification, ecological interactions
and also migration schemes considered [16]. By examining related work and
distinct models together with trying to obtain similar predictions between
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these ecological systems, we establish that the dispersal effects observed are in
fact robust, and they are not restricted to specific details and assumptions of
the modelling frameworks. These notions are also in parallel with findings from
experimental setup using spatially structured bacterial populations [8]. It has
also been experimentally verified in Drosophila metapopulations [25], and sup-
ported by the modelling verification of the underlying dispersal mechanisms,
which can determine the fruitfly species persistence [11].

It should be noted that different effects of dispersal have also being observed
in competitive systems using PDE models [43,44,50,51]: while dispersal mech-
anism can stabilise community dynamics and promote coexistence outcomes,
in certain cases, this process can also cause destabilisation of multi-species co-
existence state, and lead to dispersal-induced extinction phenomenon. These
contrasting observations occur under symmetric dispersal scenarios and de-
pend on the intensity of dispersal, which also affect the community stability
[53,44]. By extending a simple classical model [62,63] and making this ecolog-
ical system to be more realistic with the inclusion of spatial dispersal process,
recent studies [64] also found that coexistence state which would be stable
without spatial effects can be destabilised by dispersal. The results of our
investigation corroborate most of these basic prior findings about the dynam-
ics of simple ecological interactions with local dispersal and generalise these
insights to complex interactions type model consisting of mutualist-resource-
competitor-exploiter species.

Additionally, our work also re-emphasises the importance of bifurcation
analysis in understanding the qualitative behaviour of ecological models and
their overall dynamics [65,66]. Our bifurcation analysis results demonstrate
the occurrences of supercritical Hopf and transcritical bifurcations under sym-
metric dispersal scenarios, which mediate multi-species coexistence state and
sustained oscillations. Other dynamical behaviours are realised under asym-
metric dispersal strength where alternative stable states phenomenon has been
found to be more pronounced due to the emergence of different bistable attrac-
tors. The (in)direct effects exerted by resource species can also interact with
dispersal asymmetry to engender some intriguing dynamics such as subcriti-
cal Hopf, period-doubling and limit point bifurcations of cycles. Consequently,
several complex transitions between stable limit cycles and unstable ones oc-
cur through the interactions of these different bifurcation phenomena. These
kinds of transitions can engender interesting population behaviours such as
alternative stable (or unstable) states and non-equilibrium dynamics; in this
case, the sensitivity of dynamics to small perturbations in initial densities of
species are evident.

From an ecological viewpoint, this work also demonstrates the diversity
in ecological modules, in interaction with dispersal rate and its (a)symmetry,
will be vital for the conservation and management of the real multi-species
communities for which human activities are altering natural dispersal rates
of species. Our results also suggest that migration corridors should be de-
signed with appreciation of dispersal (a)symmetry mechanisms in population
dynamics in order to optimise the chance of species survival. Different disper-
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sal scenarios and magnitudes considered in this work can provide a technique
for the manipulation of migration rates (e.g., by facilitating the movement of
species through the construction of conservation corridors) in order to ensure
the persistence of interacting species. This strategy may also be used in order
to minimise the risk of extinction of an endangered species, or to maximise
the efficiency of an eradication campaign.

In conclusion, given that biological conservation do sometimes involve en-
forcing or facilitating dispersal among interacting species, a better under-
standing on the effects of dispersal (a)symmetry and local dynamics induced
by different ecological species might help in planning effective conservation
strategies. Knowledge of dispersal process and information on distinct biotic
interactions can be incorporated in developing robust predictive models for es-
timating potential distributions of species. We recommend the use of modelling
frameworks such as PDE models to predict the combined effects of dispersal
(a)symmetry and complex ecological interactions between species. We also
suggest that the overall dynamcis of ecological communities will be revealed
better by scrutinising the systems under consideration using the techniques
from dynamical systems and bifurcation analysis.
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