1 Callaway, E. & Ledford, H. How bad is Omicron? What scientists know so far. Nature 600, 197-199, doi:10.1038/d41586-021-03614-z (2021).
2 Flemming, A. Omicron, the great escape artist. Nat Rev Immunol 22, 75, doi:10.1038/s41577-022-00676-6 (2022).
3 Yamasoba, D. et al. Virological characteristics of SARS-CoV-2 BA.2 variant. bioRxiv, doi:10.1101/2022.02.14.480335 (2022).
4 Lyngse, F. et al. Transmission of SARS-CoV-2 Omicron VOC subvariants BA.1 and BA.2: Evidence from Danish Households. medRxiv, doi:10.1101/2022.01.28.22270044 (2022).
5 Elliott, P. et al. Post-peak dynamics of a national Omicron SARS-CoV-2 epidemic during January 2022. doi:10.1101/2022.02.03.22270365 (2022).
6 Halfmann, P. J. et al. SARS-CoV-2 Omicron virus causes attenuated disease in mice and hamsters. Nature, doi:10.1038/s41586-022-04441-6 (2022).
7 Shuai, H. et al. Attenuated replication and pathogenicity of SARS-CoV-2 B.1.1.529 Omicron. Nature, doi:10.1038/s41586-022-04442-5 (2022).
8 Suzuki, R. et al. Attenuated fusogenicity and pathogenicity of SARS-CoV-2 Omicron variant. Nature, doi:10.1038/s41586-022-04462-1 (2022).
9 UK Health Security Agency, SARS-CoV-2 variants of concern and variants under investigation in England Technical briefing 36. (2022).
10 Planas, D. et al. Considerable escape of SARS-CoV-2 Omicron to antibody neutralization. Nature, doi:10.1038/s41586-021-04389-z (2021).
11 Cameroni, E. et al. Broadly neutralizing antibodies overcome SARS-CoV-2 Omicron antigenic shift. Nature, doi:10.1038/s41586-021-04386-2 (2021).
12 Cao, Y. et al. Omicron escapes the majority of existing SARS-CoV-2 neutralizing antibodies. Nature, doi:10.1038/s41586-021-04385-3 (2021).
13 Liu, L. et al. Striking antibody evasion manifested by the Omicron variant of SARS-CoV-2. Nature, doi:10.1038/s41586-021-04388-0 (2021).
14 Takashita, E. et al. Efficacy of Antibodies and Antiviral Drugs against Covid-19 Omicron Variant. N Engl J Med, doi:10.1056/NEJMc2119407 (2022).
15 Walls, A. C. et al. Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein. Cell 181, 281-292 e286, doi:10.1016/j.cell.2020.02.058 (2020).
16 Hou, Y. J. et al. SARS-CoV-2 D614G variant exhibits efficient replication ex vivo and transmission in vivo. Science 370, 1464-1468, doi:10.1126/science.abe8499 (2020).
17 Xie, X. et al. Neutralization of SARS-CoV-2 spike 69/70 deletion, E484K and N501Y variants by BNT162b2 vaccine-elicited sera. Nat Med 27, 620-621, doi:10.1038/s41591-021-01270-4 (2021).
18 Lubinski, B. et al. Functional evaluation of the P681H mutation on the proteolytic activation of the SARS-CoV-2 variant B.1.1.7 (Alpha) spike. iScience 25, 103589, doi:10.1016/j.isci.2021.103589 (2022).
19 Saito, A. et al. Enhanced fusogenicity and pathogenicity of SARS-CoV-2 Delta P681R mutation. Nature 602, 300-306, doi:10.1038/s41586-021-04266-9 (2022).
20 Liu, Y. et al. The N501Y spike substitution enhances SARS-CoV-2 infection and transmission. Nature 602, 294-299, doi:10.1038/s41586-021-04245-0 (2022).
21 Leist, S. R. et al. A Mouse-Adapted SARS-CoV-2 Induces Acute Lung Injury and Mortality in Standard Laboratory Mice. Cell 183, 1070-1085 e1012, doi:10.1016/j.cell.2020.09.050 (2020).
22 Dinnon, K. H., 3rd et al. A mouse-adapted model of SARS-CoV-2 to test COVID-19 countermeasures. Nature 586, 560-566, doi:10.1038/s41586-020-2708-8 (2020).
23 Muruato, A. et al. Mouse-adapted SARS-CoV-2 protects animals from lethal SARS-CoV challenge. PLoS Biol 19, e3001284, doi:10.1371/journal.pbio.3001284 (2021).
24 Winkler, E. S. et al. SARS-CoV-2 infection of human ACE2-transgenic mice causes severe lung inflammation and impaired function. Nat Immunol 21, 1327-1335, doi:10.1038/s41590-020-0778-2 (2020).
25 McCray, P. B., Jr. et al. Lethal infection of K18-hACE2 mice infected with severe acute respiratory syndrome coronavirus. J Virol 81, 813-821, doi:10.1128/JVI.02012-06 (2007).
26 Imai, M. et al. Syrian hamsters as a small animal model for SARS-CoV-2 infection and countermeasure development. Proc Natl Acad Sci U S A 117, 16587-16595, doi:10.1073/pnas.2009799117 (2020).
27 Sia, S. F. et al. Pathogenesis and transmission of SARS-CoV-2 in golden hamsters. Nature 583, 834-838, doi:10.1038/s41586-020-2342-5 (2020).
28 Chan, J. F. et al. Simulation of the Clinical and Pathological Manifestations of Coronavirus Disease 2019 (COVID-19) in a Golden Syrian Hamster Model: Implications for Disease Pathogenesis and Transmissibility. Clin Infect Dis 71, 2428-2446, doi:10.1093/cid/ciaa325 (2020).
29 Simpson, S. et al. Radiological Society of North America Expert Consensus Statement on Reporting Chest CT Findings Related to COVID-19. Endorsed by the Society of Thoracic Radiology, the American College of Radiology, and RSNA - Secondary Publication. J Thorac Imaging 35, 219-227, doi:10.1097/RTI.0000000000000524 (2020).
30 Imai, M. et al. Characterization of a new SARS-CoV-2 variant that emerged in Brazil. Proc Natl Acad Sci U S A 118, doi:10.1073/pnas.2106535118 (2021).
31 Gilliland, T. et al. Protection of human ACE2 transgenic Syrian hamsters from SARS CoV-2 variants by human polyclonal IgG from hyper-immunized transchromosomic bovines. bioRxiv, doi:10.1101/2021.07.26.453840 (2021).
32 Gruell, H. et al. mRNA booster immunization elicits potent neutralizing serum activity against the SARS-CoV-2 Omicron variant. Nat Med, doi:10.1038/s41591-021-01676-0 (2022).
33 Cheng, S. M. S. et al. Neutralizing antibodies against the SARS-CoV-2 Omicron variant following homologous and heterologous CoronaVac or BNT162b2 vaccination. Nat Med, doi:10.1038/s41591-022-01704-7 (2022).
34 Zou, J. et al. Neutralization against Omicron SARS-CoV-2 from previous non-Omicron infection. Nat Commun 13, 852, doi:10.1038/s41467-022-28544-w (2022).
35 Rossler, A., Riepler, L., Bante, D., von Laer, D. & Kimpel, J. SARS-CoV-2 Omicron Variant Neutralization in Serum from Vaccinated and Convalescent Persons. N Engl J Med 386, 698-700, doi:10.1056/NEJMc2119236 (2022).
36 Carreno, J. M. et al. Activity of convalescent and vaccine serum against SARS-CoV-2 Omicron. Nature, doi:10.1038/s41586-022-04399-5 (2021).
37 Uraki, R. et al. Therapeutic efficacy of antibodies and antivirals against a SARS-CoV-2 Omicron variant. Research Square, doi:10.21203/rs.3.rs-1240227/v1 (2022).
38 Iketani, S. et al. Antibody Evasion Properties of SARS-CoV-2 Omicron Sublineages. bioRxiv, doi:10.1101/2022.02.07.479306 (2022).
39 Hammond, J. et al. Oral Nirmatrelvir for High-Risk, Nonhospitalized Adults with Covid-19. N Engl J Med, doi:10.1056/NEJMoa2118542 (2022).
40 Unoh, Y. et al. Discovery of S-217622, a Non-Covalent Oral SARS-CoV-2 3CL Protease Inhibitor Clinical Candidate for Treating COVID-19. bioRxiv, doi:10.1101/2022.01.26.477782 (2022).
41 Wahl, A. et al. SARS-CoV-2 infection is effectively treated and prevented by EIDD-2801. Nature 591, 451-457, doi:10.1038/s41586-021-03312-w (2021).
42 Owen, D. R. et al. An oral SARS-CoV-2 M(pro) inhibitor clinical candidate for the treatment of COVID-19. Science 374, 1586-1593, doi:10.1126/science.abl4784 (2021).
43 Majumdar, S. & Sarkar, R. Mutational and phylogenetic analyses of the two lineages of the Omicron variant. J Med Virol, doi:10.1002/jmv.27558 (2021).
44 Matsuyama, S. et al. Enhanced isolation of SARS-CoV-2 by TMPRSS2-expressing cells. Proc Natl Acad Sci U S A 117, 7001-7003, doi:10.1073/pnas.2002589117 (2020).
45 Chen, R. E. et al. Resistance of SARS-CoV-2 variants to neutralization by monoclonal and serum-derived polyclonal antibodies. Nat Med 27, 717-726, doi:10.1038/s41591-021-01294-w (2021).
46 Corbett, K. S. et al. mRNA-1273 protects against SARS-CoV-2 beta infection in nonhuman primates. Nat Immunol 22, 1306-1315, doi:10.1038/s41590-021-01021-0 (2021).
47 Yasuhara, A. et al. Antigenic drift originating from changes to the lateral surface of the neuraminidase head of influenza A virus. Nat Microbiol 4, 1024-1034, doi:10.1038/s41564-019-0401-1 (2019).
48 Case, J. B., Bailey, A. L., Kim, A. S., Chen, R. E. & Diamond, M. S. Growth, detection, quantification, and inactivation of SARS-CoV-2. Virology 548, 39-48, doi:10.1016/j.virol.2020.05.015 (2020).
49 Chung, M. et al. CT Imaging Features of 2019 Novel Coronavirus (2019-nCoV). Radiology 295, 202-207, doi:10.1148/radiol.2020200230 (2020).
50 Itokawa, K., Sekizuka, T., Hashino, M., Tanaka, R. & Kuroda, M. Disentangling primer interactions improves SARS-CoV-2 genome sequencing by multiplex tiling PCR. PLoS One 15, e0239403, doi:10.1371/journal.pone.0239403 (2020).
51 Quick, J. nCoV-2019 sequencing protocol., https://www.protocols.io/view/ncov-2019-sequencing-protocol-v3-locost-bh42j8ye?version_warning=no
52 Itokawa, K., Sekizuka, T., Hashino, M. & al., e. nCoV-2019 sequencing protocol for illumina V.5 https://www.protocols.io/view/ncov-2019-sequencing-protocol-for-illumina-b2msqc6e?version_warning=no
53 Yamayoshi, S. et al. Antibody titers against SARS-CoV-2 decline, but do not disappear for several months. EClinicalMedicine 32, 100734, doi:10.1016/j.eclinm.2021.100734 (2021).