[1] C. Redondo-Obispo, P. Serafini, E. Climent-Pascual, T.S. Ripolles, I. Mora-Seró, A. De Andrés, C. Coya, Effect of Pristine Graphene on Methylammonium Lead Iodide Films and Implications on Solar Cell Performance, ACS Appl. Energy Mater. 4 (2021) 13943–13951. https://doi.org/10.1021/acsaem.1c02738.
[2] H. Qiu, X. Zhao, H. Li, Y. Li, J. Li, J. Yang, Highly flexible and thermal conductive films of graphene/poly(naphthylamine) and applications in thermal management of LED devices, J. Appl. Polym. Sci. 138 (2021). https://doi.org/10.1002/app.51383.
[3] F. Nemati, M. Rezaie, H. Tabesh, K. Eid, G. Xu, M.R. Ganjali, M. Hosseini, C. Karaman, N. Erk, P.-L. Show, N. Zare, H. Karimi-Maleh, Cerium functionalized graphene nano-structures and their applications; A review, Environ. Res. 208 (2022). https://doi.org/10.1016/j.envres.2022.112685.
[4] H.-J. Qu, L.-J. Huang, Z.-Y. Han, Y.-X. Wang, Z.-J. Zhang, Y. Wang, Q.-R. Chang, N. Wei, M.J. Kipper, J.-G. Tang, A review of graphene-oxide/metal–organic framework composites materials: characteristics, preparation and applications, J. Porous Mater. 28 (2021) 1837–1865. https://doi.org/10.1007/s10934-021-01125-w.
[5] J.H. Choi, J.S. Seo, H.E. Jeong, K. Song, S.-H. Baeck, S.E. Shim, Y. Qian, Effects of Field-Effect and Schottky Heterostructure on p-Type Graphene-Based Gas Sensor Modified by n-Type In2O3 and Phenylenediamine, Appl. Surf. Sci. 578 (2022). https://doi.org/10.1016/j.apsusc.2021.152025.
[6] S. He, Y. Liu, W. Feng, B. Li, X. Yang, X. Huang, Carbon monoxide gas sensor based on an α-Fe 2 O 3 /reduced graphene oxide quantum dots composite film integrated Michelson interferometer , Meas. Sci. Technol. 33 (2022). https://doi.org/10.1088/1361-6501/ac39d3.
[7] V. Srivastava, K. Jain, At room temperature graphene/SnO<inf>2</inf> is better than MWCNT/SnO<inf>2</inf> as NO<inf>2</inf> gas sensor, Mater. Lett. 169 (2016) 28–32. https://doi.org/10.1016/j.matlet.2015.12.115.
[8] Z. Wang, Z. Jia, Q. Li, X. Zhang, W. Sun, J. Sun, B. Liu, B. Ha, The enhanced NO<inf>2</inf> sensing properties of SnO<inf>2</inf> nanoparticles/reduced graphene oxide composite, J. Colloid Interface Sci. 537 (2019) 228–237. https://doi.org/10.1016/j.jcis.2018.11.009.
[9] Z. Zhang, Z. Gao, R. Fang, H. Li, W. He, C. Du, UV-assisted room temperature NO<inf>2</inf> sensor using monolayer graphene decorated with SnO<inf>2</inf> nanoparticles, Ceram. Int. 46 (2020) 2255–2260. https://doi.org/10.1016/j.ceramint.2019.09.211.
[10] V.S. Kindalkar, P. Kumar, C.H. Shraddha, K. Ananya, S.M. Dharmaprakash, Evaluation of optoelectronic properties of Nd: YAG Laser deposited rGO thin film for n-type transparent electrode applications, in: S. V.K., P. C.L., Y. S.M. (Eds.), 64th DAE Solid State Phys. Symp. 2019, DAE-SSPS 2019, American Institute of Physics Inc., Department of Physics, Mangalore University, Mangalagangothri, 574199, India, 2020. https://doi.org/10.1063/5.0016705.
[11] X. Kang, N. Deng, Z. Yan, Y. Pan, W. Sun, Y. Zhang, Resistive-type VOCs and pollution gases sensor based on SnO2: A review, Mater. Sci. Semicond. Process. 138 (2022). https://doi.org/10.1016/j.mssp.2021.106246.
[12] S. Das, V. Jayaraman, SnO2: A comprehensive review on structures and gas sensors, Prog. Mater. Sci. 66 (2014) 112–255. https://doi.org/10.1016/j.pmatsci.2014.06.003.
[13] A. Marikuts, M. Rumyantseva, A. Gaskov, Effect of n-type Doping of SnO2 and ZnO on Surface Sites and Gas Sensing Behaviour, in: B. G., Z. Z., B. I. (Eds.), 30th Eurosensors Conf. Eurosensors 2016, Elsevier Ltd, Chemistry Department, Moscow State University, Vorobyevy gory 1-3, Moscow, 119991, Russian Federation, 2016: pp. 1082–1085. https://doi.org/10.1016/j.proeng.2016.11.345.
[14] X. Yan, Y. Wu, R. Li, C. Shi, R. Moro, Y. Ma, L. Ma, High-Performance UV-Assisted NO<inf>2</inf> Sensor Based on Chemical Vapor Deposition Graphene at Room Temperature, ACS Omega. 4 (2019) 14179–14187. https://doi.org/10.1021/acsomega.9b00935.
[15] H. Chen, L. Ding, K. Zhang, Z. Chen, Y. Lei, Z. Zhou, R. Hou, Preparation of chemically reduced graphene using hydrazine hydrate as the reduction agent and its NO<inf>2</inf> sensitivity at room temperature, Int. J. Electrochem. Sci. 15 (2020) 10231–10242. https://doi.org/10.20964/2020.10.72.
[16] Z. Wang, Y. Zhang, S. Liu, T. Zhang, Preparation of Ag nanoparticles-SnO<inf>2</inf> nanoparticles-reduced graphene oxide hybrids and their application for detection of NO<inf>2</inf> at room temperature, Sensors Actuators, B Chem. 222 (2016) 893–903. https://doi.org/10.1016/j.snb.2015.09.027.
[17] Z. Wang, T. Zhang, C. Zhao, T. Han, T. Fei, S. Liu, G. Lu, Anchoring ultrafine Pd nanoparticles and SnO<inf>2</inf> nanoparticles on reduced graphene oxide for high-performance room temperature NO<inf>2</inf> sensing, J. Colloid Interface Sci. 514 (2018) 599–608. https://doi.org/10.1016/j.jcis.2017.12.075.
[18] S. Zheng, Y. Li, J. Hao, H. Fang, Y. Yuan, H.-S. Tsai, Q. Sun, P. Wan, X. Zhang, Y. Wang, Hierarchical assembly of graphene-bridged SnO<inf>2</inf>-rGO/SnS<inf>2</inf> heterostructure with interfacial charge transfer highway for high-performance NO<inf>2</inf> detection, Appl. Surf. Sci. 568 (2021). https://doi.org/10.1016/j.apsusc.2021.150926.
[19] M.A. Abdulsattar, R.H. Jabbar, H.H. Abed, H.M. Abduljalil, The sensitivity of pristine and Pt doped ZnO nanoclusters to NH3 gas: A transition state theory study, Optik (Stuttg). 242 (2021). https://doi.org/10.1016/j.ijleo.2021.167158.
[20] M.A. Abdulsattar, H.H. Abed, R.H. Jabbar, N.M. Almaroof, Effect of formaldehyde properties on SnO<inf>2</inf> clusters gas sensitivity: A DFT study, J. Mol. Graph. Model. 102 (2021). https://doi.org/10.1016/j.jmgm.2020.107791.
[21] T. Shao, F. Zhang, W. Zhang, Density functional theory study on the electronic structure and optical properties of SnO2, Xiyou Jinshu Cailiao Yu Gongcheng/Rare Met. Mater. Eng. 44 (2015) 2409–2414. https://doi.org/10.1016/s1875-5372(16)30031-5.
[22] M.A. Abdulsattar, D.A. Nassrullah, Z.T. Abdulhamied, Light alkanes physisorption and chemisorption on SnO2 pyramid clusters surface as a function of temperature: A DFT study, J. Adv. Pharm. Educ. Res. 9 (2019) 118–124. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85090878116&partnerID=40&md5=7ac074ac114e6cf887d954a079d50573.
[23] M.A. Abdulsattar, Transition state theory application to H2 gas sensitivity of pristine and Pd doped SnO2 clusters, Karbala Int. J. Mod. Sci. 6 (2020) 13. https://doi.org/10.33640/2405-609X.1615.
[24] E.-L. Zins, Microhydration of a Carbonyl Group: How does the Molecular Electrostatic Potential (MESP) Impact the Formation of (H2O)n:(R2C═O)Complexes?, J. Phys. Chem. A. 124 (2020) 1720–1734. https://doi.org/10.1021/acs.jpca.9b09992.
[25] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A.J. Montgomery, J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, Ö. Farkas, J.B. Foresman, J. V. Ortiz, J. Cioslowski, D.J. Fox, Gaussian 09, Revision A.02, (2009).
[26] M.A. Abdulsattar, R.H. Jabbar, H.M. Fadhel, S.A. Alkharkhe, SnO2 nanocluster interaction with noble and environmental gases: a DFT study, Struct. Chem. 33 (2022) 71–79. https://doi.org/10.1007/s11224-021-01823-w.
[27] O. V Filonenko, A.G. Grebenyuk, V. V Lobanov, Quantum chemical modeling of the structure and properties of SnO2 nanoclusters , Him. Fiz. Ta Tehnol. Poverhni. 12 (2021) 283–290. https://doi.org/10.15407/HFTP12.04.283.
[28] S. Prodhan, S. Mazumdar, S. Ramasesha, Correlated electronic properties of a graphene nanoflake: Coronene, Molecules. 24 (2019). https://doi.org/10.3390/molecules24040730.
[29] M.F. Budyka, Semiempirical study on the absorption spectra of the coronene-like molecular models of graphene quantum dots, Spectrochim. Acta - Part A Mol. Biomol. Spectrosc. 207 (2019) 1–5. https://doi.org/10.1016/j.saa.2018.09.007.
[30] B. Saha, P.K. Bhattacharyya, Density Functional Study on the Adsorption of 5-Membered N-Heterocycles on B/N/BN-Doped Graphene: Coronene as a Model System, ACS Omega. 3 (2018) 16753–16768. https://doi.org/10.1021/acsomega.8b02340.
[31] R.D. Johnson, NIST Computation Chemistry Comparison and Benchmark Database, NIST Standard Reference Database Number 101 Release 14, (2006). https://doi.org/10.18434/T47C7Z.
[32] T. Jirsak, J. Dvorak, J.A. Rodriguez, Adsorption of NO2 on Rh(111) and Pd/Rh(111): photoemission studies, Surf. Sci. 436 (1999) L683–L690. https://doi.org/10.1016/S0039-6028(99)00656-1.
[33] P.G. Ashmore, M.G. Burnett, Concurrent molecular and free radical mechanisms in the thermal decomposition of nitrogen dioxide, Trans. Faraday Soc. 58 (1962) 253–261. https://doi.org/10.1039/tf9625800253.
[34] Joseph W. Ochterski, Thermochemistry in Gaussian, (2000).
[35] S.M. Yakout, Engineering of visible light photocatalytic activity in SnO2 nanoparticles: Cu2+-integrated Li+, Y3+ or Zr4+ dopants, Opt. Mater. (Amst). 116 (2021). https://doi.org/10.1016/j.optmat.2021.111077.
[36] X. Wang, A. Marikutsa, M. Rumyantseva, A. Gaskov, A. Knotko, X. Li, P-n Transition-Enhanced Sensing Properties of rGO-SnO2 Heterojunction to NO2 at Room Temperature, IEEE Sens. J. 20 (2020) 4562–4570. https://doi.org/10.1109/JSEN.2020.2966233.
[37] Z. Wang, T. Zhang, T. Han, T. Fei, S. Liu, G. Lu, Oxygen vacancy engineering for enhanced sensing performances: A case of SnO2 nanoparticles-reduced graphene oxide hybrids for ultrasensitive ppb-level room-temperature NO2 sensing, Sensors Actuators, B Chem. 266 (2018) 812–822. https://doi.org/10.1016/j.snb.2018.03.169.
[38] R. Al-Gaashani, A. Najjar, Y. Zakaria, S. Mansour, M.A. Atieh, XPS and structural studies of high quality graphene oxide and reduced graphene oxide prepared by different chemical oxidation methods, Ceram. Int. 45 (2019) 14439–14448. https://doi.org/10.1016/j.ceramint.2019.04.165.
[39] A.A. Yousif, R.M. Hathal, H.R. Abed, The Effectiveness of Decorating Antimony on the Structural, Optical, and Electrical Characteristics of SnO2 Nanowires, J. Electron. Mater. 50 (2021) 5442–5452. https://doi.org/10.1007/s11664-021-09070-9.
[40] S. Malvankar, S. Doke, R. Gahlaut, E. Martinez-Teran, A.A. El-Gendy, U. Deshpande, S. Mahamuni, Co-Doped SnO2 Nanocrystals: XPS, Raman, and Magnetic Studies, J. Electron. Mater. 49 (2020) 1872–1880. https://doi.org/10.1007/s11664-019-07865-5.
[41] H. Zhang, J. Feng, T. Fei, S. Liu, T. Zhang, SnO2 nanoparticles-reduced graphene oxide nanocomposites for NO2 sensing at low operating temperature, Sensors Actuators, B Chem. 190 (2014) 472–478. https://doi.org/10.1016/j.snb.2013.08.067.
[42] N. Tammanoon, A. Wisitsoraat, C. Sriprachuabwong, D. Phokharatkul, A. Tuantranont, S. Phanichphant, C. Liewhiran, Ultrasensitive NO2 Sensor Based on Ohmic Metal-Semiconductor Interfaces of Electrolytically Exfoliated Graphene/Flame-Spray-Made SnO2 Nanoparticles Composite Operating at Low Temperatures, ACS Appl. Mater. Interfaces. 7 (2015) 24338–24352. https://doi.org/10.1021/acsami.5b09067.