Aisa-Alvarez A., Soto M.E., Guarner-Lans V., Camarena-Alejo G., Franco-Granillo J., Martínez-Rodríguez E.A., Gamboa Á.R., Manzano-Pech L. and Pérez-Torres I. (2020). Usefulness of antioxidants as adjuvant therapy for septic shock: A randomized clinical trial. Medicina (Kaunas). 56, 619.
Anand S.K. and Tikoo S.K. (2013). Viruses as modulators of mitochondrial functions. Adv. Virol. 2013, 738794.
Archer S.L., Sharp W.W. and Weir E.K. (2020). Differentiating COVID-19 pneumonia from acute respiratory distress syndrome and high altitude pulmonary edema: Therapeutic implications circulation. Circulation. 142, 101-104.
Bernhardt D., Muller M., Reichert A.S. and Osiewacz H.D. (2015). Simultaneous impairment of mitochondrial fission and fusion reduces mitophagy and shortens replicative lifespan. Sci. Rep. 5, 7885.
Brealey D., Brand M., Hargreaves I., Heales S., Land J., Smolenski R., Nathan A.D., Chris E.C. and Mervyn S. (2002). Association between mitochondrial dysfunction and severity and outcome of septic shock. Lancet. 360, 219-223.
Chan C.P., Siu K.L., Chin K.T., Yuen K.Y., Zheng B. and Jin D.Y. (2006). Modulation of the unfolded protein response by the severe acute respiratory syndrome coronavirus spike protein. J. Virol. 80, 9279-9287.
Davies J.P., Almasy K.M., McDonald E.F. and Plate, L. (2020). Comparative multiplexed interactomics of SARS-CoV-2 and homologous coronavirus non-structural proteins identifies unique and shared host-cell dependencies. bioRxiv. 2020, 201517.
Delgado-Roche L. and Mesta F. (2020). Oxidative stress as key player in severe acute respiratory syndrome Coronavirus (SARS-CoV) Infection. Arch. Med. Res. 51, 384-387.
Edeas M., Jumana S. and Peyssonnaux, C. (2020). Iron: innocent bystander or vicious culprit in COVID-19 pathogenesis? Int. J. Infect. Dis. 97, 303-305.
García-Yébenes I., García-Culebras A., Peña-Martínez C., Fernández-López D., Díaz G.J., Negredo P., Avendaño C., Castellanos M., Gasull T., Dávalos A., Moro M.A. and Lizasoain I. (2018). Iron overload exacerbates the risk of hemorrhagic transformation after TPA (tissue-type plasminogen activator) administration in thromboembolic stroke mice. Stroke. 49, 2163-2172.
Glingston S.R., Deb R., Kumar S. and Nagotu S. (2019). Organelle dynamics and viral infections: at cross roads. Microbes. Infect. 21, 20-32.
Guler N., Siddiqui F. and Fareed, J. (2020) Is the reason of increased D-Dimer levels in COVID-19 because of ACE-2-induced apoptosis in endothelium? Clin. Appl. Thromb. Hemost. 26, 1076029620935526.
Hee J.S. and Cresswell P. (2017). Viperin interaction with mitochondrial antiviral signaling protein (MAVS) limits viperin-mediated inhibition of the interferon response in macrophages. PLoS. One. 12, e0172236.
Herst P.M., Rowe M.R., Carson, G.M. and Berridge M.V. (2017). Functional mitochondria in health and disease Front. Endocrinol. (Lausanne). 8, 296.
Ibrahim I.M., Abdelmalek D.H., Elshahat M.E. and Elfiky, A.A. (2020). COVID-19 Spike-host cell receptor GRP78 binding site prediction. J. Infect. 80, 554-562.
Ince C. (2005). The microcirculation is the motor of sepsis. Crit. Care. 9, S13-S19.
Jean-Beltran P.M., Cook K.C. and Cristea I.M. (2017). Exploring and exploiting proteome organization during viral infection. J. Virol. 91, e00268-e00217.
Jonathan P.D., Almasy K.M., Eli F.M. and Lars P. (2020). Comparative multiplexed interactomics of SARS-CoV-2 and homologous coronavirus non-structural proteins identifies unique and shared host-cell dependencies. bioRxiv. 2020, 201517.
Jouihan H.A., Cobine P.A., Cooksey R.C., Hoagland E.A., Boudina S., Abel E.D., Winge D.R. and McClain D.A. (2008). Iron-mediated inhibition of mitochondrial manganese uptake mediates mitochondrial dysfunction in a mouse model of hemochromatosis. Mol. Med. 14, 98-108.
Kapadia S.B. and Chisari F.V. (2005). Hepatitis C virus RNA replication is regulated by host geranylgeranylation and fatty acids. Proc. Natl. Acad. Sci. U S A. 102, 2561-2566.
Khan M., Syed G.H., Kim S.J. and Siddiqui, A. (2015). Mitochondrial dynamics and viral infections: a close nexus. Biochim. Biophys. Acta. 1853, 2822-2833.
Koshiba T., Yasukawa K., Yanagi Y. and Kawabata S. (2011). Mitochondrial membrane potential is required for MAVS‐mediated antiviral signaling. Sci. Signal. 158, ra7.
Kwong J.Q. and Molkentin J.D. (2015). Physiological and pathological roles of the mitochondrial permeability transition pore in the heart. Cell. Metab. 21, 206-214.
Lane D.J.R., Merlot A.M., Huang M.L.H., Bae D.H., Jansson, P.J., Sahni, S., Kalinowski D.S. and Richardson D.R. (2015). Cellular iron uptake, trafficking and metabolism: key molecules and mechanisms and their roles in disease. Biochim. Biophys. Acta. 1853, 1130-1144.
Levi M., Thachil J., Iba T. and Levy J.H. (2020). Coagulation abnormalities and thrombosis in patients with COVID-19. Lancet. Haematol. 6, e438-e440.
Levy M.M., Fink M.P., Marshall J.C., Abraham E., Angus D., Cook D., Cohen J., Opal SM., Vincent S.M. and Ramsay J.L. (2003). 2001 SCCM/ESICM/ACCP/ATS/SIS international sepsis definitions conference. Crit. Care. Med. 31, 1250-1256.
Levy R.J. and Deutschman C.S. Cytochrome c oxidase dysfunction in sepsis. (2007). Crit. Care. Med. 35, S468-S475.
Li X., Fang P., Mai J., Choin E.T., Wang H. and Yang X.F. (2013). Targeting mitochondrial reactive oxygen species as novel therapy for inflammatory diseases and cancers. J. Hematol. Oncol. 6, 19.
Lu L.F., Li S., Lu X.B., LaPatra S.E., Zhang N., Zhang X.J., Chen D.D., Nie P. and Zhang Y.A. ( 2016). Spring viremia of carp virus N protein suppresses fish IFNφ1 production by targeting the mitochondrial antiviral signaling protein. J. Immunol. 196, 3744-3753.
Luna-López A., López-Diazguerrero N.E., González-Puertos V.Y., Triana-Martínez F. and Königsberg-Fainstein M. (2008). El fantástico mundo de la proteína Bcl-2. Reb. 27, 93-102.
Mailloux R.J. (2018). Mitochondrial antioxidants and maintenance of cellular hydrogen peroxide levels. Oxid. Med. Cell. Longev. 2018, 1-10.
Malgorzata K., Ghobrial R.M. and Kubiak J.Z. (2020). The Role of genetic sex and mitochondria in response to COVID-19 infection. Int. Arch. Allergy. Immunol. 181, 629-634.
Melser S., Lavie J. and Bénard G. (2015). Mitochondrial degradation and energy metabolism. Biochim. Biophysi. Acta. 1853, 2812-2821.
Mills E.L., Kelly B. and O'Neill L.A.J. (2017). Mitochondria are the powerhouses of immunity. Nat. Immunol. 18, 488-498.
Mittal M., Siddiqui M.R., Tran K., Reddy S.P. and Malik A.B. (2014). Reactive oxygen species in inflammation and tissue injury. Antioxid. Redox. Signal. 20, 1126-1167.
Paul B.T., Manz D.H., Torti F.M. and Torti S.V. (2017). Mitochondria and Iron: current questions. Expert. Rev. Hematol. 10, 65–79.
Paumard P.J., Vaillier J., Coulary B., Schaeffer J., Soubannier V., Mueller D.M., Brèthes D., di Rago J.P. and Velours J. (2002). The ATP synthase is involved in generating mitochondrial cristae morphology. EMBO. J. 21, 221-230.
Pérez-Torres I., Manzano-Pech L., Rubio-Ruíz M.E., Soto M.E. and Guarner-Lans, V. (2020). Nitrosative stress and its association with cardiometabolic disorders. Molecules. 25, 2555.
Petersen J.M., Her L.S. and Dahlberg J.E. (2001). Multiple vesiculoviral matrix proteins inhibit both nuclear export and import. Proc. Natl. Acad. Sci. U S A. 98, 8590–8595.
Qu C., Zhang S., Li Y., Wang Y., Peppelenbosch M.P. and Pan Q. (2019). Mitochondria in the biology, pathogenesis, and treatment of hepatitis virus infections. Rev. Med. Virol. 29, e2075.
Ramiere C., Rodriguez J., Enache L.S., Lotteau V., Andre P. and Diaz O. (2014). Activity of hexokinase is increased by its interaction with hepatitis C virus protein NS5A. J. Virol. 88, 3246-3254.
Rongvaux A., Jackson R., Harman C.C., Li T., West A.P., R de Zoete M., Wu Y., Yordy B., Lakhani S.A. and Kuan C.Y. (2014). Apoptotic caspases prevent the induction of type I interferons by mitochondrial DNA. Cell. 159, 1563-1577.
Roshal M., Zhu Y. and Planelles, V. (2001). Apoptosis in AIDS. Poptosis. 6, 103-116.
Rumora A.E., Lentz S.I., Hinder L.M., Jackson S.W., Valesano A., Levinson G.E. and Feldman E.L. (2018). Dyslipidemia impairs mitochondrial trafficking and function in sensory neurons. FASEB. J. 32, 195–207.
Sakaida I., Kimura T., Yamasaki T., Fukumoto Y., Watanabe K., Aoyama M. and Okita K. (2005). Cytochrome c is a possible new marker for fulminant hepatitis in humans. J. Gastroenterol. 40, 179-185.
Simmons J.D., Lee Y.L., Pastukh V.M., Capley G., Muscat C.A., Muscat D.C., Marshall M.L., Brevard S.B. and Gillespie M.N. (2017). Potential contribution of mitochondrial DNA damage associated molecular patterns in transfusion products to the development of acute respiratory distress syndrome after multiple transfusions J. Trauma. Acute. Care. Surg. 82, 1023-1029.
Singh K.K., Chaubey G., Chen J.Y. and Suravajhala P. (2020). Decoding SARS-CoV-2 hijacking of host mitochondria in COVID-19 pathogenesis. Am. J. Physiol. Cell. Physiol. 319, C258-C267.
Singhal A.T. (2020). Review of coronavirus disease-2019 (COVID-19). Indian. J. Pediatr. 87, 281-286.
Soto M.E., Guarner-Lans V., Soria-Castro E., Manzano-Pech L. and Pérez-Torres I. (2020). Is Antioxidant therapy a useful complementary measure for Covid-19 treatment? An algorithm for its application. Medicina. (Kaunas). 56, E386.
Thachil J. (2020). The protective rather than prothrombotic fibrinogen in COVID-19 and other inflammatory states. J. Thromb. Haemost. 18, 1849-1852.
Wai T. and Langer T. (2016). Mitochondrial dynamics and metabolic regulation. Trends. Endocrinol. Metab. 27, 105-117.
Wang Y.J., Pan Q.W. and Zhao J.M. (2017). Hepatitis E virus infection induces mitochondrial fusion to facilitate viral replication. Hepatology. 66, 372a.
Williamson C.D., DeBiasi R.L. and Colberg-Poley A.M. (2012). Viral product trafficking to mitochondria, mechanisms and roles in pathogenesis. Infect. Disord. Drug. Targets. 12, 18-37.
Wu K.E., Fazal F.M., Parker K.R., Zou J. and Chang H.Y. (2020). RNA-GPS Predicts SARS-CoV-2 RNA residency to host mitochondria and nucleolus. Cell. Syst. 11, 102-108.
Yin X., Li X., Ambardekar C., Hu Z., Lhomme S. and Feng Z. (2017). Hepatitis E virus persists in the presence of a type III interferon response. PLoS. Pathog.13, e1006417.
Young A., Oldford C. and Mailloux R.J. (2020). Lactate dehydrogenase supports lactate oxidation in mitochondria isolated from different mouse tissues. Redox. Biol. 28, 1-7.
Zhang Y., Xiao M., Zhang S., Xia P., Cao W., Jiang W., Chen H., Ding X., Zhao H., Zhang H., Wang C., Zhao J., Sun X., Tian R., Wu W., Wu D., Ma J., Chen Y., Zhang D., Xie J., Yan X., Zhou X., Liu Z., Wang J., Du B., Qin Y., Gao P., Qin X., Xu Y., Zhang W., Li T., Zhang F., Zhao Y., Li Y. and Zhang S. (2020). Coagulopathy and antiphospholipid antibodies in patients with Covid-19. N. Engl. J. Med. 382, e38.
Zhou Y., Frey T.K. and Yang J.J. (2009). Viral calciomics: Interplays between Ca2+ and virus. Cell. Calcium. 46, 1-17.