[1] Y. Yan, Z. Xu, S. Dai, L. Qian, L. Sun, Z. Gong, Targeting autophagy to sensitive glioma to temozolomide treatment, J Exp Clin Cancer Res, 35 (2016) 23.
[2] J. Huang, D. Zhao, Z. Liu, F. Liu, Repurposing psychiatric drugs as anti-cancer agents, Cancer Lett, 419 (2018) 257-265.
[3] D. Ricard, A. Idbaih, F. Ducray, M. Lahutte, K. Hoang-Xuan, J.Y. Delattre, Primary brain tumours in adults, Lancet, 379 (2012) 1984-1996.
[4] H. Zhang, R. Wang, Y. Yu, J. Liu, T. Luo, F. Fan, Glioblastoma Treatment Modalities besides Surgery, J Cancer, 10 (2019) 4793-4806.
[5] G. Driessens, J. Kline, T.F. Gajewski, Costimulatory and coinhibitory receptors in anti-tumor immunity, Immunol Rev, 229 (2009) 126-144.
[6] N.L. Syn, M.W.L. Teng, T.S.K. Mok, R.A. Soo, De-novo and acquired resistance to immune checkpoint targeting, Lancet Oncol, 18 (2017) e731-e741.
[7] F.S. Hodi, S.J. O'Day, D.F. McDermott, R.W. Weber, J.A. Sosman, J.B. Haanen, R. Gonzalez, C. Robert, D. Schadendorf, J.C. Hassel, W. Akerley, A.J. van den Eertwegh, J. Lutzky, P. Lorigan, J.M. Vaubel, G.P. Linette, D. Hogg, C.H. Ottensmeier, C. Lebbe, C. Peschel, I. Quirt, J.I. Clark, J.D. Wolchok, J.S. Weber, J. Tian, M.J. Yellin, G.M. Nichol, A. Hoos, W.J. Urba, Improved survival with ipilimumab in patients with metastatic melanoma, N Engl J Med, 363 (2010) 711-723.
[8] N.A. Rizvi, J. Mazieres, D. Planchard, T.E. Stinchcombe, G.K. Dy, S.J. Antonia, L. Horn, H. Lena, E. Minenza, B. Mennecier, G.A. Otterson, L.T. Campos, D.R. Gandara, B.P. Levy, S.G. Nair, G. Zalcman, J. Wolf, P.J. Souquet, E. Baldini, F. Cappuzzo, C. Chouaid, A. Dowlati, R. Sanborn, A. Lopez-Chavez, C. Grohe, R.M. Huber, C.T. Harbison, C. Baudelet, B.J. Lestini, S.S. Ramalingam, Activity and safety of nivolumab, an anti-PD-1 immune checkpoint inhibitor, for patients with advanced, refractory squamous non-small-cell lung cancer (CheckMate 063): a phase 2, single-arm trial, Lancet Oncol, 16 (2015) 257-265.
[9] F. Liu, J. Huang, Y. Xiong, S. Li, Z. Liu, Large-scale analysis reveals the specific clinical and immune features of CD155 in glioma, Aging (Albany NY), 11 (2019) 5463-5482.
[10] D.F. Quail, R.L. Bowman, L. Akkari, M.L. Quick, A.J. Schuhmacher, J.T. Huse, E.C. Holland, J.C. Sutton, J.A. Joyce, The tumor microenvironment underlies acquired resistance to CSF-1R inhibition in gliomas, Science, 352 (2016) aad3018.
[11] A.M. Dunn-Pirio, G. Vlahovic, Immunotherapy approaches in the treatment of malignant brain tumors, Cancer, 123 (2017) 734-750.
[12] A.S. Berghoff, B. Kiesel, G. Widhalm, O. Rajky, G. Ricken, A. Wohrer, K. Dieckmann, M. Filipits, A. Brandstetter, M. Weller, S. Kurscheid, M.E. Hegi, C.C. Zielinski, C. Marosi, J.A. Hainfellner, M. Preusser, W. Wick, Programmed death ligand 1 expression and tumor-infiltrating lymphocytes in glioblastoma, Neuro Oncol, 17 (2015) 1064-1075.
[13] J. Liu, A.M. Albrecht, X. Ni, J. Yang, M. Li, Glioblastoma tumor initiating cells: therapeutic strategies targeting apoptosis and microRNA pathways, Curr Mol Med, 13 (2013) 352-357.
[14] T.R. Hodges, M. Ott, J. Xiu, Z. Gatalica, J. Swensen, S. Zhou, J.T. Huse, J. de Groot, S. Li, W.W. Overwijk, D. Spetzler, A.B. Heimberger, Mutational burden, immune checkpoint expression, and mismatch repair in glioma: implications for immune checkpoint immunotherapy, Neuro Oncol, 19 (2017) 1047-1057.
[15] J.M. Fauci, J.M. Straughn, Jr., S. Ferrone, D.J. Buchsbaum, A review of B7-H3 and B7-H4 immune molecules and their role in ovarian cancer, Gynecol Oncol, 127 (2012) 420-425.
[16] J.M. Gostner, K. Becker, F. Uberall, D. Fuchs, The potential of targeting indoleamine 2,3-dioxygenase for cancer treatment, Expert Opin Ther Targets, 19 (2015) 605-615.
[17] Q. Huang, J. Xia, L. Wang, X. Wang, X. Ma, Q. Deng, Y. Lu, M. Kumar, Z. Zhou, L. Li, Z. Zeng, K.H. Young, Q. Yi, M. Zhang, Y. Li, miR-153 suppresses IDO1 expression and enhances CAR T cell immunotherapy, J Hematol Oncol, 11 (2018) 58.
[18] S. Wanggou, C. Feng, Y. Xie, L. Ye, F. Wang, X. Li, Sample Level Enrichment Analysis of KEGG Pathways Identifies Clinically Relevant Subtypes of Glioblastoma, J Cancer, 7 (2016) 1701-1710.
[19] E. O'Flaherty, J. Kaye, TOX defines a conserved subfamily of HMG-box proteins, BMC Genomics, 4 (2003) 13.
[20] P. Aliahmad, A. Seksenyan, J. Kaye, The many roles of TOX in the immune system, Curr Opin Immunol, 24 (2012) 173-177.
[21] X. Yu, Z. Li, TOX gene: a novel target for human cancer gene therapy, Am J Cancer Res, 5 (2015) 3516-3524.
[22] J.O. Jones, S.F. Chin, L.A. Wong-Taylor, D. Leaford, B.A. Ponder, C. Caldas, A.T. Maia, TOX3 mutations in breast cancer, PLoS One, 8 (2013) e74102.
[23] S. Safavi, M. Hansson, K. Karlsson, A. Biloglav, B. Johansson, K. Paulsson, Novel gene targets detected by genomic profiling in a consecutive series of 126 adults with acute lymphoblastic leukemia, Haematologica, 100 (2015) 55-61.
[24] M. Tessema, C.M. Yingling, M.J. Grimes, C.L. Thomas, Y. Liu, S. Leng, N. Joste, S.A. Belinsky, Differential epigenetic regulation of TOX subfamily high mobility group box genes in lung and breast cancers, PLoS One, 7 (2012) e34850.
[25] T. Kajitani, T. Mizutani, K. Yamada, T. Yazawa, T. Sekiguchi, M. Yoshino, H. Kawata, K. Miyamoto, Cloning and characterization of granulosa cell high-mobility group (HMG)-box protein-1, a novel HMG-box transcriptional regulator strongly expressed in rat ovarian granulosa cells, Endocrinology, 145 (2004) 2307-2318.
[26] S. Dittmer, Z. Kovacs, S.H. Yuan, G. Siszler, M. Kogl, H. Summer, A. Geerts, S. Golz, T. Shioda, A. Methner, TOX3 is a neuronal survival factor that induces transcription depending on the presence of CITED1 or phosphorylated CREB in the transcriptionally active complex, J Cell Sci, 124 (2011) 252-260.
[27] D. Bastien, V. Bellver Landete, M. Lessard, N. Vallieres, M. Champagne, A. Takashima, M.E. Tremblay, Y. Doyon, S. Lacroix, IL-1alpha Gene Deletion Protects Oligodendrocytes after Spinal Cord Injury through Upregulation of the Survival Factor Tox3, J Neurosci, 35 (2015) 10715-10730.
[28] A. Seksenyan, A. Kadavallore, A.E. Walts, B. de la Torre, D. Berel, S.P. Strom, P. Aliahmad, V.A. Funari, J. Kaye, TOX3 is expressed in mammary ER(+) epithelial cells and regulates ER target genes in luminal breast cancer, BMC Cancer, 15 (2015) 22.
[29] C. Bounaix Morand du Puch, E. Barbier, A. Kraut, Y. Coute, J. Fuchs, A. Buhot, T. Livache, M. Seve, A. Favier, T. Douki, D. Gasparutto, S. Sauvaigo, J. Breton, TOX4 and its binding partners recognize DNA adducts generated by platinum anticancer drugs, Arch Biochem Biophys, 507 (2011) 296-303.
[30] G.P. Wagner, K. Kin, V.J. Lynch, Measurement of mRNA abundance using RNA-seq data: RPKM measure is inconsistent among samples, Theory Biosci, 131 (2012) 281-285.
[31] H.S. Phillips, S. Kharbanda, R. Chen, W.F. Forrest, R.H. Soriano, T.D. Wu, A. Misra, J.M. Nigro, H. Colman, L. Soroceanu, P.M. Williams, Z. Modrusan, B.G. Feuerstein, K. Aldape, Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis, Cancer Cell, 9 (2006) 157-173.
[32] C.M. Zhang, D.J. Brat, Genomic profiling of lower-grade gliomas uncovers cohesive disease groups: implications for diagnosis and treatment, Chin J Cancer, 35 (2016) 12.
[33] R.G. Verhaak, K.A. Hoadley, E. Purdom, V. Wang, Y. Qi, M.D. Wilkerson, C.R. Miller, L. Ding, T. Golub, J.P. Mesirov, G. Alexe, M. Lawrence, M. O'Kelly, P. Tamayo, B.A. Weir, S. Gabriel, W. Winckler, S. Gupta, L. Jakkula, H.S. Feiler, J.G. Hodgson, C.D. James, J.N. Sarkaria, C. Brennan, A. Kahn, P.T. Spellman, R.K. Wilson, T.P. Speed, J.W. Gray, M. Meyerson, G. Getz, C.M. Perou, D.N. Hayes, N. Cancer Genome Atlas Research, Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1, Cancer Cell, 17 (2010) 98-110.
[34] C.R. Seehus, J. Kaye, The Role of TOX in the Development of Innate Lymphoid Cells, Mediators Inflamm, 2015 (2015) 243868.
[35] D. Aran, Z. Hu, A.J. Butte, xCell: digitally portraying the tissue cellular heterogeneity landscape, Genome Biol, 18 (2017) 220.
[36] A.M. Donson, D.K. Birks, S.A. Schittone, B.K. Kleinschmidt-DeMasters, D.Y. Sun, M.F. Hemenway, M.H. Handler, A.E. Waziri, M. Wang, N.K. Foreman, Increased immune gene expression and immune cell infiltration in high-grade astrocytoma distinguish long-term from short-term survivors, J Immunol, 189 (2012) 1920-1927.
[37] S. Nobusawa, J. Lachuer, A. Wierinckx, Y.H. Kim, J. Huang, C. Legras, P. Kleihues, H. Ohgaki, Intratumoral patterns of genomic imbalance in glioblastomas, Brain Pathol, 20 (2010) 936-944.
[38] P. Krimpenfort, A. Ijpenberg, J.Y. Song, M. van der Valk, M. Nawijn, J. Zevenhoven, A. Berns, p15Ink4b is a critical tumour suppressor in the absence of p16Ink4a, Nature, 448 (2007) 943-946.
[39] D.R. Robinson, Y.M. Wu, R.J. Lonigro, P. Vats, E. Cobain, J. Everett, X. Cao, E. Rabban, C. Kumar-Sinha, V. Raymond, S. Schuetze, A. Alva, J. Siddiqui, R. Chugh, F. Worden, M.M. Zalupski, J. Innis, R.J. Mody, S.A. Tomlins, D. Lucas, L.H. Baker, N. Ramnath, A.F. Schott, D.F. Hayes, J. Vijai, K. Offit, E.M. Stoffel, J.S. Roberts, D.C. Smith, L.P. Kunju, M. Talpaz, M. Cieslik, A.M. Chinnaiyan, Integrative clinical genomics of metastatic cancer, Nature, 548 (2017) 297-303.
[40] A. Gieryng, D. Pszczolkowska, K.A. Walentynowicz, W.D. Rajan, B. Kaminska, Immune microenvironment of gliomas, Lab Invest, 97 (2017) 498-518.
[41] P. Aliahmad, J. Kaye, Development of all CD4 T lineages requires nuclear factor TOX, J Exp Med, 205 (2008) 245-256.
[42] S. Yun, S.H. Lee, S.R. Yoon, M.S. Kim, Z.H. Piao, P.K. Myung, T.D. Kim, H. Jung, I. Choi, TOX regulates the differentiation of human natural killer cells from hematopoietic stem cells in vitro, Immunol Lett, 136 (2011) 29-36.
[43] P. Aliahmad, B. de la Torre, J. Kaye, Shared dependence on the DNA-binding factor TOX for the development of lymphoid tissue-inducer cell and NK cell lineages, Nat Immunol, 11 (2010) 945-952.
[44] J. Huang, F. Liu, Z. Liu, H. Tang, H. Wu, Q. Gong, J. Chen, Immune Checkpoint in Glioblastoma: Promising and Challenging, Front Pharmacol, 8 (2017) 242.
[45] O. Khan, J.R. Giles, S. McDonald, S. Manne, S.F. Ngiow, K.P. Patel, M.T. Werner, A.C. Huang, K.A. Alexander, J.E. Wu, J. Attanasio, P. Yan, S.M. George, B. Bengsch, R.P. Staupe, G. Donahue, W. Xu, R.K. Amaravadi, X. Xu, G.C. Karakousis, T.C. Mitchell, L.M. Schuchter, J. Kaye, S.L. Berger, E.J. Wherry, TOX transcriptionally and epigenetically programs CD8(+) T cell exhaustion, Nature, 571 (2019) 211-218.
[46] A.C. Scott, F. Dundar, P. Zumbo, S.S. Chandran, C.A. Klebanoff, M. Shakiba, P. Trivedi, L. Menocal, H. Appleby, S. Camara, D. Zamarin, T. Walther, A. Snyder, M.R. Femia, E.A. Comen, H.Y. Wen, M.D. Hellmann, N. Anandasabapathy, Y. Liu, N.K. Altorki, P. Lauer, O. Levy, M.S. Glickman, J. Kaye, D. Betel, M. Philip, A. Schietinger, TOX is a critical regulator of tumour-specific T cell differentiation, Nature, 571 (2019) 270-274.