1. Vosoughi, S., Roy, D. & Aral, S. The spread of true and false news online. Science 359, 1146–1151 (2018).
2. Del Vicario, M. et al. The spreading of misinformation online. Proc. Natl. Acad. Sci. 113, 554–559 (2016).
3. West, J. D. & Bergstrom, C. T. Misinformation in and about science. Proc. Natl. Acad. Sci. 118, e1912444117 (2021).
4. Bavel, J. J. Van et al. Using social and behavioural science to support COVID-19 pandemic response. Nat. Hum. Behav. 4, 460–471 (2020).
5. Zarocostas, J. How to fight an infodemic. Lancet 395, 676 (2020).
6. Frynta, D. et al. Emotions triggered by live arthropods shed light on spider phobia. Sci. Rep. 11, 22268 (2021).
7. Mammola, S., Nanni, V., Pantini, P. & Isaia, M. Media framing of spiders may exacerbate arachnophobic sentiments. People Nat. 2, 1145–1157 (2020).
8. Cushing, N. & Markwell, K. ‘Watch out for these KILLERS!’: newspaper coverage of the Sydney funnel web spider and its impact on antivenom research. Health History 12, 79–96 (2010).
9. Mammola, S. et al. An expert-curated global database of online newspaper articles on spiders and spider bites. Sci. Data, in press (2022).
10. WHO et al. Managing the COVID-19 infodemic: Promoting healthy behaviours and mitigating the harm from misinformation and disinformation. (2020).
11. Bergstrom, C. T. & Bak-Coleman, J. B. Information gerrymandering in social networks skews collective decision-making. Nature 573, 40–41 (2019).
12. Stewart, A. J. et al. Information gerrymandering and undemocratic decisions. Nature 573, 117–121 (2019).
13. López-Baucells, A., Rocha, R. & Fernández-Llamazares, Á. When bats go viral: negative framings in virological research imperil bat conservation. Mamm. Rev. 48, 62–66 (2018).
14. Bombieri, G. et al. Content analysis of media reports on predator attacks on humans: Toward an understanding of human risk perception and predator acceptance. Bioscience 68, 577–584 (2018).
15. van der Linden, S., Leiserowitz, A., Rosenthal, S. & Maibach, E. Inoculating the Public against Misinformation about Climate Change. Glob. Challenges 1, 1600008 (2017).
16. Lazer, D. et al. The science of fake news. Science 359, 1094–1096 (2018).
17. Kilgo, D. K., Harlow, S., García-Perdomo, V. & Salaverría, R. A new sensation? An international exploration of sensationalism and social media recommendations in online news publications. Journalism 19, 1497–1516 (2016).
18. Lerner, J. S., Li, Y., Valdesolo, P. & Kassam, K. S. Emotion and Decision Making. Annu. Rev. Psychol. 66, 799–823 (2015).
19. Hicks, J. R. & Stewart, W. P. Exploring potential components of wildlife-inspired awe. Hum. Dimens. Wildl. 23, 293–295 (2018).
20. Jacobs, M. H. Human Emotions Toward Wildlife. Hum. Dimens. Wildl. 17, 1–3 (2012).
21. Leibovich, T., Cohen, N. & Henik, A. Itsy bitsy spider?: Valence and self-relevance predict size estimation. Biol. Psychol. 121, 138–145 (2016).
22. Zvaríková, M. et al. What makes spiders frightening and disgusting to people? Frontiers in Ecology and Evolution 9, 424 (2021).
23. Afshari, R. Bite like a spider, sting like a scorpion. Nature 537, 167 (2016).
24. Nentwig, W., Gnädinger, M., Fuchs, J. & Ceschi, A. A two year study of verified spider bites in Switzerland and a review of the European spider bite literature. Toxicon 73, 104–110 (2013).
25. Stuber, M. & Nentwig, W. How informative are case studies of spider bites in the medical literature? Toxicon 114, 40–44 (2016).
26. Jambrina, C. U., Vacas, J. M. & Sánchez-Barbudo, M. Preservice teachers’ conceptions about animals and particularly about spiders. Electron. J. Res. Educ. Psychol. 8, 787–814 (2010).
27. Harber, K. D. & Cohen, D. J. The emotional broadcaster theory of social sharing. J. Lang. Soc. Psychol. 24, 382–400 (2005).
28. Duffy, A., Tandoc, E. & Ling, R. Too good to be true, too good not to share: the social utility of fake news. Information, Commun. Soc. 23, 1965–1979 (2020).
29. Vetter, R. S. Arachnids misidentified as brown recluse spiders by medical personnel and other authorities in North America. Toxicon 54, 545–547 (2009).
30. Tewksbury, J. J. et al. Natural history’s place in science and society. Bioscience 64, 300–310 (2014).
31. CHEQ. The economic cost of bad actors on the internet. (2019).
32. Nanni, V. et al. Social media and large carnivores: Sharing biased news on attacks on humans. Front. Ecol. Evol. 8, 71 (2020).
33. Knight, A. J. ‘Bats, snakes and spiders, Oh my!’ How aesthetic and negativistic attitudes, and other concepts predict support for species protection. J. Environ. Psychol. 28, 94–103 (2008).
34. Papworth, S. K. et al. Quantifying the role of online news in linking conservation research to Facebook and Twitter. Conserv. Biol. 29, 825–833 (2015).
35. MacFarlane, D. & Rocha, R. Guidelines for communicating about bats to prevent persecution in the time of COVID-19. Biol. Conserv. 248, 108650 (2020).
36. Jacobi, F. et al. Prevalence, co-morbidity and correlates of mental disorders in the general population: Results from the German Health Interview and Examination Survey (GHS). Psychol. Med. 34, 597–611 (2004).
37. Schmitt, W. J. & Müri, R. M. Neurobiology of spider phobia | Neurobiologie der spinnenphobie. Schweizer Arch. fur Neurol. und Psychiatr. 160, 352–355 (2009).
38. Zsido, A. N., Arato, N., Inhof, O., Janszky, J. & Darnai, G. Short versions of two specific phobia measures: The snake and the spider questionnaires. J. Anxiety Disord. 54, 11–16 (2018).
39. Oosterink, F. M. D., de Jongh, A. & Hoogstraten, J. Prevalence of dental fear and phobia relative to other fear and phobia subtypes. Eur. J. Oral Sci. 117, 135–143 (2009).
40. Kramer, A. D. I., Guillory, J. E. & Hancock, J. T. Experimental evidence of massive-scale emotional contagion through social networks. Proc. Natl. Acad. Sci. 111, 8788–8790 (2014).
41. Dominique, B. & A., S. D. The chronic growing pains of communicating science online. Science 375, 613–614 (2022).
42. R Core Team. R: A Language and Environment for Statistical Computing. (2021).
43. Wickham, H. ggplot2: Elegant Graphics for Data Analysis. (Springer-Verlag, 2016).
44. Zuur, A. F. & Ieno, E. N. A protocol for conducting and presenting results of regression-type analyses. Methods Ecol. Evol. 7, 636–645 (2016).
45. Muff, S., Nilsen, E. B., O’Hara, R. B. & Nater, C. R. Rewriting results sections in the language of evidence. Trends Ecol. Evol., in press (2021).
46. Wasserstein, R. L., Schirm, A. L. & Lazar, N. A. Moving to a world beyond p < 0.05. Am. Stat. 73, 1–19 (2019).
47. Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting Linear Mixed-Effects Models Using lme4. J. Stat. Softw. 67, 1–48 (2015).
48. Lüdecke, D., Ben-Shachar, M. S., Patil, I., Waggoner, P. & Makowski, D. performance: An R Package for Assessment, Comparison and Testing of Statistical Models. J. Open Source Softw. 6, 3139 (2020).
49. Csardi, G. & Nepusz, T. The igraph software package for complex network research. Complex Syst. 1965 (2006).
50. Pedersen, T. L. tidygraph: A Tidy API for Graph Manipulation. (2020).
51. Hunter, D. R., Handcock, M. S., Butts, C. T., Goodreau, S. M. & Morris, M. ergm: A Package to Fit, Simulate and Diagnose Exponential-Family Models for Networks. J. Stat. Softw. 24, 1–29 (2008).
52. Hunter, D. R. et al. ergm: Fit, simulate and diagnose exponential-family models for networks. (2021).
53. Desmarais, B. A. & Cranmer, S. J. Statistical inference for valued-edge networks: The Generalized Exponential Random Graph Model. PLoS One 7, e30136 (2012).
54. Krivitsky, P. N. ergm.count: Fit, simulate and diagnose exponential-family models for networks with count edges. (2021).