Błaszczyk L, Popiel D, Chełkowski J, Koczyk G, Samuels GJ, Sobieralski K, Siwulski M (2011) Species diversity of Trichoderma in Poland. J Appl Genet 52(2):233-243 https://link.springer.xilesou.top/article/10.1007/s13353-011-0039-z
Contreras-Cornejo HA, Macías-Rodríguez L, del-Val E, Larsen J (2016) Ecological functions of Trichoderma spp. and their secondary metabolites in the rhizosphere: interactions with plants. FEMS Microbiol Ecol 92(4):fiw036 https://academic.oup.com/femsec/article/92/4/fiw036/2197739
Daguerre Y, Siegel K, Edel-Hermann V, Steinberg C (2014) Fungal proteins and genes associated with biocontrol mechanisms of soil-borne pathogens: a review. Fungal Biol Rev 28(4):97-125 https://sciencedirect.xilesou.top/science/article/abs/pii/S174946131400030X
Daryaei A, Jones EE, Glare TR, Falloon RE (2016) pH and water activity in culture media affect biological control activity of Trichoderma atroviride against Rhizoctonia solani. Biol Control 92:24-30 https://sciencedirect.xilesou.top/science/article/abs/pii/S1049964415300232
Daryaei A, Jones EE, Glare TR, Falloon RE (2016) Nutrient amendments affect Trichoderma atroviride conidium production, germination and bioactivity. Biol Control 93: 8-14 https://sciencedirect.xilesou.top/science/article/abs/pii/S1049964415300475
Dou K, Lu Z, Wu Q, et al. (2018) A novel polyphasic identification system for genus Trichoderma. bioRxiv 481382 https://www.biorxiv.org/content/10.1101/481382v1.full.pdf+html
Du Plessis IL, Druzhinina IS, Atanasova L, Yarden O, Jacobs K (2018) The diversity of Trichoderma species from soil in South Africa, with five new additions. Mycologia 110(3): 559-583 https://www.tandfonline.xilesou.top/doi/abs/10.1080/00275514.2018.1463059
Friedl MA, Druzhinina IS (2012) Taxon-specific metagenomics of Trichoderma reveals a narrow community of opportunistic species that regulate each other’s development. Microbiology 158(Pt 1):69 https://www.ncbi.xilesou.top/pmc/articles/PMC3352360/
Gajera HP, Savaliya DD, Patel SV, Golakiya BA (2015) Trichoderma viride induces pathogenesis related defense response against rot pathogen infection in groundnut (Arachis hypogaea L.). Infect Genet Evol 34:314-325 https://sciencedirect.xilesou.top/science/article/abs/pii/S1567134815002658
Hagn A, Wallisch S, Radl V, Munch JC, Schloter M (2007) A new cultivation independent approach to detect and monitor common Trichoderma species in soils. J Microbiol Meth 69(1):86-92 https://sciencedirect.xilesou.top/science/article/pii/S0167701206003502
Huang X, Chen L, Ran W, Shen Q, Yang X (2011) Trichoderma harzianum strain SQR-T37 and its bio-organic fertilizer could control Rhizoctonia solani damping-off disease in cucumber seedlings mainly by the mycoparasitism. Appl Microbiol Biot 91(3): 741-755 https://link.springer.xilesou.top/article/10.1007/s00253-011-3259-6
Jaklitsch WM (2009) European species of Hypocrea Part I. The green-spored species. Stud Mycol 63:1-91 https://sciencedirect.xilesou.top/science/article/pii/S0166061614600907
Jaklitsch WM, Voglmayr H (2015) Biodiversity of Trichoderma (Hypocreaceae) in Southern Europe and Macaronesia. Stud Mycology 80:1-87 https://sciencedirect.xilesou.top/science/article/pii/S0166061614000505
Kataoka R, Yokota K, Goto I (2010) Biocontrol of yellow disease of Brassica campestris caused by Fusarium oxysporum with Trichoderma viride under field conditions. Archives Phytopathol Plant Protect 43(9):900-909 https://www.tandfonline.xilesou.top/doi/abs/10.1080/03235400802075583
Kredics L, Chen L, Kedves O, et al. (2018) Molecular tools for monitoring Trichoderma in agricultural environments. Front Microbiol 9:1599 https://www.frontiersin.org/articles/10.3389/fmicb.2018.01599/full
Lehmann L, Rønnest NP, Jørgensen CI, Olsson L, Stocks SM, Jørgensen HS, Hobley T (2016) Linking hydrolysis performance to Trichoderma reesei cellulolytic enzyme profile. Biotechnol Bioeng 113(5):1001-1010 https://onlinelibrary.wiley.xilesou.top/doi/abs/10.1002/bit.25871
Meincke R, Weinert N, Radl V, Schloter M, Smalla K, Berg G (2010) Development of a molecular approach to describe the composition of Trichoderma communities. J microbiol meth 80(1):63-69 https://sciencedirect.xilesou.top/science/article/pii/S0167701209003522
Moreno CA, Castillo F, González A, et al (2009) Biological and molecular characterization of the response of tomato plants treated with Trichoderma koningiopsis. Physiol Mol Plant P 74(2):111-120 https://sciencedirect.xilesou.top/science/article/abs/pii/S0885576509000654
Nawrocka J, Małolepsza U (2013) Diversity in plant systemic resistance induced by Trichoderma. Biol Control 67(2):149-156 https://sciencedirect.xilesou.top/science/article/abs/pii/S1049964413001539
Oskiera M, Szczech M, Stępowska A, Smolińska U, Bartoszewski G (2017) Monitoring of Trichoderma species in agricultural soil in response to application of biopreparations. Biol Control 113:65-72 https://sciencedirect.xilesou.top/science/article/abs/pii/S1049964417301391
Prabhakaran N, Prameeladevi T, Sathiyabama M, Kamil D (2015) Multiplex PCR for detection and differentiation of diverse Trichoderma species. Ann Microbiol 65(3):1591-1595 https://link.springer.xilesou.top/article/10.1007/s13213-014-0998-5
Qiu M, Zhang R, Xue C, Zhang S, Li S, Zhang N, Shen Q (2012) Application of bio-organic fertilizer can control Fusarium wilt of cucumber plants by regulating microbial community of rhizosphere soil. Biol Fert Soils 48(7):807-816 https://link.springer.xilesou.top/article/10.1007/s00374-012-0675-4
Samuels GJ, Ismaiel A, Mulaw TB, Szakacs G, Druzhinina IS, Kubicek CP, Jaklitsch WM (2012) The Longibrachiatum clade of Trichoderma: a revision with new species. Fungal divers 55(1):77-108 https://link.springer.xilesou.top/article/10.1007/s13225-012-0152-2
Saroj DB, Dengeti SN, Aher S, Gupta AK (2015) A rapid, one step molecular identification of Trichoderma citrinoviride and Trichoderma reesei. World J Microb Biot 31(6):995-999 https://link.springer.xilesou.top/article/10.1007/s11274-015-1839-9
Skoneczny D, Oskiera M, Szczech M, Bartoszewski G (2015) Genetic diversity of Trichoderma atroviride strains collected in Poland and identification of loci useful in detection of within-species diversity. Folia Microbiol 60(4):297-307 https://link.springer.xilesou.top/article/10.1007/s12223-015-0385-z
Sun J, Pei Y, Li E, Li W, Hyde KD, Yin WB, Liu X (2016) A new species of Trichoderma hypoxylon harbours abundant secondary metabolites. Sci Rep-UK 6:37369 https://www.nature.xilesou.top/articles/srep37369
Taghdi Y, Hermosa R, Dominguez S, Rubio MB, Essalmani H, Nicolas C, Monte E (2015) Effectiveness of composts and Trichoderma strains for control of Fusarium wilt of tomato. Phytopathol Mediterr 54(2):232-240 https://www.jstor.org/stable/43871831
Thambugala KM, Hyde KD, Tanaka K, et al. (2015) Towards a natural classification and backbone tree for Lophiostomataceae, Floricolaceae, and Amorosiaceae fam. nov. Fungal Divers 74(1):199-266 https://link.springer.xilesou.top/article/10.1007/s13225-015-0348-3
Vinale F, Sivasithamparam K, Ghisalberti EL, Marra R, Woo SL, Lorito M (2008) Trichoderma–plant–pathogen interactions. Soil Biol Biochem 40(1):1-10 https://sciencedirect.xilesou.top/science/article/abs/pii/S0038071707002908
Woo SL, Ruocco M, Vinale F, et al. (2014) Trichoderma-based products and their widespread use in agriculture. Open Mycol J 8(1):71-126 https://benthamopen.com/ABSTRACT/TOMYCJ-8-71
Zhu ZX, Zhuang WY (2015) Trichoderma (Hypocrea) species with green ascospores from China. Persoonia 34:113-129 https://www.ncbi.xilesou.top/pmc/articles/PMC4510275/