
Page 1/8

Simulating Derivations of Context-Free Grammar

KULDEEP VAYADANDE 
(

kuldeep.vayadande@gmail.com
)
VIT, PUNE

Research Article

Keywords: Context-Free Grammar, Leftmost Derivation, Parse Tree, Python, Rightmost Derivation

Posted Date: February 28th, 2022

DOI: https://doi.org/10.21203/rs.3.rs-1395103/v1

License:


This work is licensed under a Creative Commons Attribution 4.0 International
License.
 
Read Full License

https://doi.org/10.21203/rs.3.rs-1395103/v1
mailto:kuldeep.vayadande@gmail.com
https://doi.org/10.21203/rs.3.rs-1395103/v1
https://creativecommons.org/licenses/by/4.0/


Page 2/8

Abstract
As opposed to automata, grammars are used to generate strings instead of identifying them. The use of
regular languages and finite automata is simple and restrictive. Context-Free Grammar or CFG is a formal
grammar used to produce all possible combinations of strings in a given formal language. Context-Free
Grammar consists of a set of grammar rules which are finite and predetermined. In computer science, a
CFG is said to be ambiguous if a given string could be generated by the grammar in more than one way.
Syntax of high-level programming languages, Parser programs and compiler design can be described
using Context-Free Grammar. This paper presents a method to implement the derivations of Context-Free
Grammar using Python. By applying an appropriate production rule to the leftmost non-terminal in each
step, a leftmost derivation is obtained. On the contrary, by applying the appropriate production rule to the
rightmost non-terminal in each step, a rightmost derivation is obtained.

I. Introduction
According to Chomsky Hierarchy, Context-Free Grammar belongs to grammar type-2. A CFG is quadruple,
G = (V, T, P, S). G is the grammar used to generate the string of a language by using a finite collection of
production rules. T is the final collection of terminal symbols which are denoted by lowercase letters. V is
the final collection of non-terminal symbols which are denoted by uppercase letters. P is a finite collection
of production rules. These rules are used for interchanging the non-terminals symbols in a string present
on the left side of the production with other terminal or nonterminal symbols present on the right side of
the production. S is considered to be the start symbol starting from which a string is derived. A Non-
terminal is substituted repeatedly on the right-hand of the production to derive a string until all the non-
terminals have been terminal symbols.

Programming languages in which a string can be generated in more than one way are said to have
ambiguous grammar. In such a case, to select the intended parse tree of an ambiguous construct,
semantic information is required. A derivation or a parse tree is used to represent the semantic
information of a string which is generated from a Context-Free Grammar.

A derivation tree has a node that consists of a variable present on the left of the production rule while the
child nodes consist of variables present on the right of the same production rule. A derivation tree
illustrates how each variable is substituted in the derivation from the root identified with the start symbol,
to the leaves or the terminals [1].

At any stage during a parse, on deriving a form that is not yet a sentence (sentential form), we have two
choices to make:

a. Determine which non-terminal in the sentential form to which a production rule must be applied to.

b. Or which production rule for that non-terminal to apply



Page 3/8

The first decision here is relatively easy. The input string is scanned from left to right in order to efficiently
derive the leftmost terminal of the output sentence. Thus, the process of choosing the leftmost non-
terminal occurring in the sentential form and applying a production rule is performed. This type of
parsing technique is called the top-down parse and is also known as the leftmost derivation [2]. The top-
down parsing technique starts the evaluation at the root node of the tree and proceeds systematically
down the tree until it reaches the leaves and the given string is generated.

The situation is reversed in the bottom-up parsing technique, and the production rules are applied in the
reverse order to the symbols present on the left. The Bottom-up approach starts the evaluation directly
from the leaves i.e., the lowest level of the tree and proceeds upwards systematically for parsing the
node.

Ii.	Literature Review
String moment properties and the lengths of derivation of stochastic CFGs are investigated in this paper.
The issue with calculating the moments of the string length is demonstrated to be identical to the
problem of calculating the moments of the derivation length. The paper shows that moments exist and
are finite in nature, and it demonstrates that the finiteness of the subsequent moments if the existing
initial moment is finite[3][8].

The derivation complexity function on G for each grammar G in d(F) is defined. It demonstrates that any
constant factor n can always speed up derivations, in the sense that an corresponding grammar G' in (F)
may be found for each positive integer n [4][7].

A CFG is used with Z notation in this paper to aid in the corroboration of a compiler component. The
authors have defined the grammar, and then presented the technique for language derivation applying the
leftmost derivations. As part of the parsing analysis, the ambiguity of a language is examined [5][9].

Component-wise derivations are introduced, as well as the first implementation of Chomsky-
Schützenberger parsing. It makes use of a variety of context-free grammar and involves numerous
enhancements in order to attain feasibility. Finally, the results are compared to those of current grammar-
based parsers [6].

Iii. Methodology
The project proposes a method to simulate the derivations of Context-Free Grammars. The project is
programmed in Python and the WebApp is made with the help of Streamlit which is a framework
popularly used to create quick, simple apps using Python.

A. Proposed System



Page 4/8

In the system proposed in the paper, a Production Rule is taken from the user as a string input. The user is
then provided can enter another Production by increasing the ‘Number of Productions’ field by clicking the
‘+’ button. The production rules entered by the user are then saved to a text file – ‘ProductionRules.txt’
using the concepts of file handling in Python. Next, the user is prompted to enter a string to check whether
it forms a part of the language generated by the productions of the Context-Free Grammar. If the
language can be generated using the production rules provided by the user, the derivation is displayed on
the WebApp. Else, the program prints ‘The string does not exist’ and asks the user to ‘Try Again’.

B. Flowchart
Figure 1. describes a flowchart that provides a precise overview of the working of the proposed method to
derive the leftmost(LMD) and rightmost(RMD) derivations of a string using the given productions.

C. Algorithm

Step 1:- Inputting Productions
Productions are rules that have the form, Variable -> String of Variables and Terminals

Consider S to be the start symbol, then

S -> aSb

S -> a

can be said to be two productions for the Context-Free Grammar. The input entered by the user in the
program follows the same format and is accepted as a string. This value is stored in the variable ‘rule’.
This ‘rule’ is then stored into a text file of the name ‘ProductionRules.txt’

Adding another production can be done by pressing ‘+’ button next to the ‘Number of Productions’ field.

Step 2:- Saving the productions to a dictionary of list of
tuples
After all the productions have been entered, the program reads the productions from the file
‘ProductionRules.txt’ line by line and splits it into two parts: Variable and string of variables and
terminals.

For the production rules S -> aSb and S-> a, a dictionary of the form {'S': [('a', 'S', 'b'), ('a',)]} is created.

Step 3:- Inputting a string from the user
A string is inputted from the user to check whether the string forms a part of the language or not. The
string inputted by the user is stored in the variable ‘w’. After which each character of the string is
separated by a single white space.



Page 5/8

Step 4:- Checking if the string is part of Grammar
To obtain the Leftmost derivation, we call the function ‘gen_random_left()’ and pass ‘S’ as a parameter.
This function is responsible for generating a random sentence starting with the given symbol. Since, we
have assumed ‘S’ to be our starting symbol, we have passed ‘S’ as a parameter to the function. The
variable ‘rand_prod’ will store a random production starting with the given symbol from the dictionary
‘prod’. The function ‘gen_random_left()’ calls another function ‘replace_left()’ which will replace the non-
terminals by the productions one at a time. The function ‘gen_random_left()’ calls itself recursively till the
string is generated. The string which is stored in the variable ‘sentence’ is then returned to the main
function.

To obtain the Rightmost derivation, we call the function ‘gen_random_right()’ and pass ‘S’ as a parameter.
Here, the number of capital alphabets is calculated ‘cap’ and depending on the value, the ‘rule’ is passed
to ‘replace_right()’. If ‘cap’>1, then rule is reversed and passed to ‘replace_right()’, else it is passed as it is.
‘replace_right()’ which will replace the non-terminals by the productions till the given string one at a time.
The string which is stored in the variable ‘sentence’ is then returned to the main function. In the main()
function, this process is repeated multiple times so as to cover all possible combinations. The returned
string is compared to the string inputted by the user. If the string belongs to the language, the derivation is
printed. Else, the program prints ‘Try Again’ as the output.

Iv. Results And Discussion
The developed system thus is able to accept productions from the user by adding the number of
productions by clicking the ‘+’ button. This is demonstrated in the Fig. 2.

Next, the user is prompted to enter the test string to obtain its leftmost or rightmost derivations if the
string exists in the grammar.

It also able to correctly identify whether the input string is part of the language or not. generates the
correct derivation if the string is generated by the Context-Free Grammar. If the user enters the string
‘aabb’ which exists in the grammar inputted, the following Leftmost and Rightmost Derivation is
obtained.

The result obtained after pressing the ‘Submit’ button is as follows:

Leftmost derivation:
S = > AB = > aaB = > aabb = > aabb

Rightmost derivation:
S = > AB = > Abb = > aabb = > aabb



Page 6/8

If the input string is not accepted by the Context-Free Grammar, the program prints the message ‘The
string doesn’t exist in the grammar’ and asks the user to ‘Try Again’.

V.	Limitations
a. If too many production rules are entered, the derivation may or may not be accurately derived.

b. The project only includes the checking of strings containing English Alphabets and ^, use of
operators in expressions do not yield the correct output.

Vi. Conclusion
Thus, in this paper we propose a system that is able to generate derivations for an input string using
productions given by the user and identify whether the string is part of a language. It successfully
simulates the derivations of CFGs.

Vii. Future Scope
CFGs are an essential part of Natural Language Processing. This study can be useful to explore the
applications of CFG in Grammar Checkers, Information Extraction and Translations. The system could be
made to accept more complex strings or expressions in the future.

References
1. P. Linz, “An introduction to Formal Languages and Automata”, Jones and Bartlett Learning, 5th

edition.

2. J. Power, “Notes on Formal Language Theory and Parsing”, (2002).

3. S E. Hutchins, "Moments of string and derivation lengths of stochastic context-free grammars."
Information Sciences 4.2 (1972): 179–191.

4. Ginsburg, Seymour, and N. Lynch. "Derivation complexity in context-free grammar forms." SIAM
Journal on Computing 6.1 (1977): 123–138.

5. K. A. Buragga, and N.A. Zafar. "Formal Parsing Analysis of Context-Free Grammar Using Left Most
Derivations." International Conference on Software Engineering Advances. 2011.

6. T. Ruprecht, and T. Denkinger. "Implementation of a Chomsky-Schützenberger n-best parser for
weighted multiple context-free grammars." Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Language Technologies,
Volume 1 (Long and Short Papers). 2019.

7. Raza, Mir Adil, Kuldeep Baban Vayadande, and H. D. Preetham. "DJANGO MANAGEMENT OF
MEDICAL STORE.", International Research Journal of Modernization in Engineering Technology and
Science, Volume:02/Issue:11/November – 2020

8. K.B. Vayadande, Nikhil D. Karande,” Automatic Detection and Correction of Software Faults: A Review
Paper”, International Journal for Research in Applied Science & Engineering Technology (IJRASET)



Page 7/8

ISSN: 2321–9653, Volume 8 Issue IV Apr 2020.

9. Kuldeep Vayadande, Ritesh Pokarne, Mahalaxmi Phaldesai, Tanushri Bhuruk, Tanmai Patil, Prachi
Kumar, “SIMULATION OF CONWAY’S GAME OF LIFE USING CELLULAR AUTOMATA” International
Research Journal of Engineering and Technology (IRJET), Volume: 09 Issue: 01 | Jan 2022, e-ISSN:
2395-0056, p-ISSN: 2395-0072

10. Varad Ingale, Kuldeep Vayadande, Vivek Verma, Abhishek Yeole, Sahil Zawar, Zoya Jamadar.
<bi>Lexical analyzer using DFA</bi>, International Journal of Advance Research, Ideas and
Innovations in Technology, www.IJARIIT.com.

Figures

Figure 1



Page 8/8

Flowchart of the model

Figure 2

Inputting the Productions


