[1] NREL Efficiency Chart, (n.d.). https://www.nrel.gov/pv/cell-efficiency.html.
[2] R.E. Brandt, J.R. Poindexter, P. Gorai, R.C. Kurchin, R.L.Z. Hoye, L. Nienhaus, M.W.B. Wilson, J.A. Polizzotti, R. Sereika, R. Žaltauskas, L.C. Lee, J.L. Macmanus-Driscoll, M. Bawendi, V. Stevanović, T. Buonassisi, Searching for “defect-Tolerant” Photovoltaic Materials: Combined Theoretical and Experimental Screening, Chemistry of Materials. 29 (2017) 4667–4674. https://doi.org/10.1021/acs.chemmater.6b05496.
[3] C. Wehrenfennig, G.E. Eperon, M.B. Johnston, H.J. Snaith, L.M. Herz, High charge carrier mobilities and lifetimes in organolead trihalide perovskites, Advanced Materials. 26 (2014) 1584–1589. https://doi.org/10.1002/adma.201305172.
[4] L.M. Herz, Charge-Carrier Mobilities in Metal Halide Perovskites: Fundamental Mechanisms and Limits, ACS Energy Letters. 2 (2017) 1539–1548. https://doi.org/10.1021/acsenergylett.7b00276.
[5] S. de Wolf, J. Holovsky, S.J. Moon, P. Löper, B. Niesen, M. Ledinsky, F.J. Haug, J.H. Yum, C. Ballif, Organometallic halide perovskites: Sharp optical absorption edge and its relation to photovoltaic performance, Journal of Physical Chemistry Letters. 5 (2014) 1035–1039. https://doi.org/10.1021/jz500279b.
[6] G.E. Eperon, S.D. Stranks, C. Menelaou, M.B. Johnston, L.M. Herz, H.J. Snaith, Formamidinium lead trihalide: A broadly tunable perovskite for efficient planar heterojunction solar cells, Energy and Environmental Science. 7 (2014) 982–988. https://doi.org/10.1039/c3ee43822h.
[7] J.H. Noh, S.H. Im, J.H. Heo, T.N. Mandal, S. il Seok, Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells, Nano Letters. 13 (2013) 1764–1769. https://doi.org/10.1021/nl400349b.
[8] D.P. McMeekin, G. Sadoughi, W. Rehman, G.E. Eperon, M. Saliba, M.T. Hörantner, A. Haghighirad, N. Sakai, L. Korte, B. Rech, M.B. Johnston, L.M. Herz, H.J. Snaith, M.T. Horantner, A. Haghighirad, N. Sakai, L. Korte, B. Rech, M.B. Johnston, L.M. Herz, H.J. Snaith, A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells, Science (1979). 351 (2016) 151–155. https://doi.org/10.1126/science.aad5845.
[9] T. Leijtens, K.A. Bush, R. Prasanna, M.D. McGehee, Opportunities and challenges for tandem solar cells using metal halide perovskite semiconductors, Nature Energy. 3 (2018) 828–838. https://doi.org/10.1038/s41560-018-0190-4.
[10] D. Kim, H.J. Jung, I.J. Park, B.W. Larson, S.P. Dunfield, C. Xiao, J. Kim, J. Tong, P. Boonmongkolras, S.G. Ji, F. Zhang, S.R. Pae, M. Kim, S.B. Kang, V. Dravid, J.J. Berry, J.Y. Kim, K. Zhu, D.H. Kim, B. Shin, Efficient, stable silicon tandem cells enabled by anion-engineered wide-bandgap perovskites, Science (1979). 160 (2020) eaba3433. https://doi.org/10.1126/science.aba3433.
[11] N.J. Jeon, J.H. Noh, W.S. Yang, Y.C. Kim, S. Ryu, J. Seo, S. il Seok, Compositional engineering of perovskite materials for high-performance solar cells, Nature. 517 (2015) 476–480. https://doi.org/10.1038/nature14133.
[12] X. He, J. Chen, X. Ren, L. Zhang, Y. Liu, J. Feng, J. Fang, K. Zhao, S. (Frank) Liu, 40.1% Record Low‐Light Solar‐Cell Efficiency by Holistic Trap‐Passivation using Micrometer‐Thick Perovskite Film, Advanced Materials. 33 (2021) 2100770. https://doi.org/10.1002/adma.202100770.
[13] S.N.R. Kantareddy, I.M. Peters, I. Mathews, S. Sun, M. Layurova, J. Thapa, J.P. Correa-Baena, R. Bhattacharyya, T. Buonassisi, S.E. Sarma, Perovskite PV-Powered RFID: Enabling Low-Cost Self-Powered IoT Sensors, IEEE Sensors Journal. 20 (2020) 471–478. https://doi.org/10.1109/JSEN.2019.2939293.
[14] T. Jesper Jacobsson, J.-P. Correa-Baena, M. Pazoki, M. Saliba, K. Schenk, M. Grätzel, A. Hagfeldt, Exploration of the compositional space for mixed lead halogen perovskites for high efficiency solar cells, Energy & Environmental Science. 9 (2016) 1706–1724. https://doi.org/10.1039/C6EE00030D.
[15] J.-P. Correa-Baena, M. Saliba, T. Buonassisi, M. Grätzel, A. Abate, W. Tress, A. Hagfeldt, Promises and challenges of perovskite solar cells, Science (1979). 358 (2017) 739–744. https://doi.org/10.1126/science.aam6323.
[16] M. Saliba, J.-P. Correa-Baena, C.M. Wolff, M. Stolterfoht, N. Phung, S. Albrecht, D. Neher, A. Abate, How to Make over 20% Efficient Perovskite Solar Cells in Regular ( n–i–p ) and Inverted ( p–i–n ) Architectures, Chemistry of Materials. 30 (2018) 4193–4201. https://doi.org/10.1021/acs.chemmater.8b00136.
[17] M. Saliba, T. Matsui, J.-Y. Seo, K. Domanski, J.-P. Correa-Baena, M.K. Nazeeruddin, S.M. Zakeeruddin, W. Tress, A. Abate, A. Hagfeldt, M. Grätzel, Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency, Energy & Environmental Science. 9 (2016) 1989–1997. https://doi.org/10.1039/C5EE03874J.
[18] T. Duong, H.K. Mulmudi, Y. Wu, X. Fu, H. Shen, J. Peng, N. Wu, H.T. Nguyen, D. Macdonald, M. Lockrey, T.P. White, K. Weber, K. Catchpole, Light and Electrically Induced Phase Segregation and Its Impact on the Stability of Quadruple Cation High Bandgap Perovskite Solar Cells, ACS Applied Materials and Interfaces. 9 (2017) 26859–26866. https://doi.org/10.1021/acsami.7b06816.
[19] J. Xu, C.C. Boyd, Z.J. Yu, A.F. Palmstrom, D.J. Witter, B.W. Larson, R.M. France, J. Werner, S.P. Harvey, E.J. Wolf, W. Weigand, S. Manzoor, M.F.A.M.A.M. van Hest, J.J. Berry, J.M. Luther, Z.C. Holman, M.D. McGehee, Triple-halide wide–band gap perovskites with suppressed phase segregation for efficient tandems, Science (1979). 367 (2020) 1097–1104. https://doi.org/10.1126/science.aaz5074.
[20] E.T. Hoke, D.J. Slotcavage, E.R. Dohner, A.R. Bowring, H.I. Karunadasa, M.D. McGehee, Reversible photo-induced trap formation in mixed-halide hybrid perovskites for photovoltaics, Chemical Science. 6 (2015) 613–617. https://doi.org/10.1039/c4sc03141e.
[21] A.J. Barker, A. Sadhanala, F. Deschler, M. Gandini, S.P. Senanayak, P.M. Pearce, E. Mosconi, A.J. Pearson, Y. Wu, A.R. Srimath Kandada, T. Leijtens, F. de Angelis, S.E. Dutton, A. Petrozza, R.H. Friend, Defect-Assisted Photoinduced Halide Segregation in Mixed-Halide Perovskite Thin Films, ACS Energy Letters. 2 (2017) 1416–1424. https://doi.org/10.1021/acsenergylett.7b00282.
[22] M.C. Brennan, S. Draguta, P. v. Kamat, M. Kuno, Light-Induced Anion Phase Segregation in Mixed Halide Perovskites, ACS Energy Letters. 3 (2018) 204–213. https://doi.org/10.1021/acsenergylett.7b01151.
[23] D.J. Slotcavage, H.I. Karunadasa, M.D. McGehee, Light-Induced Phase Segregation in Halide-Perovskite Absorbers, ACS Energy Letters. 1 (2016) 1199–1205. https://doi.org/10.1021/acsenergylett.6b00495.
[24] A. Al-Ashouri, E. Köhnen, B. Li, A. Magomedov, H. Hempel, P. Caprioglio, J.A. Márquez, A.B. Morales Vilches, E. Kasparavicius, J.A. Smith, N. Phung, D. Menzel, M. Grischek, L. Kegelmann, D. Skroblin, C. Gollwitzer, T. Malinauskas, M. Jošt, G. Matič, B. Rech, R. Schlatmann, M. Topič, L. Korte, A. Abate, B. Stannowski, D. Neher, M. Stolterfoht, T. Unold, V. Getautis, S. Albrecht, Monolithic perovskite/silicon tandem solar cell with >29% efficiency by enhanced hole extraction, Science (1979). 370 (2020) 1300–1309. https://doi.org/10.1126/science.abd4016.
[25] Y. Lin, A. Magomedov, Y. Firdaus, D. Kaltsas, A. El-Labban, H. Faber, D.R. Naphade, E. Yengel, X. Zheng, E. Yarali, N. Chaturvedi, K. Loganathan, D. Gkeka, S.H. AlShammari, O.M. Bakr, F. Laquai, L. Tsetseris, V. Getautis, T.D. Anthopoulos, 18.4 % Organic Solar Cells Using a High Ionization Energy Self-Assembled Monolayer as Hole-Extraction Interlayer, ChemSusChem. 14 (2021) 3569–3578. https://doi.org/10.1002/cssc.202100707.
[26] J. Sun, C. Shou, J. Sun, X. Wang, Z. Yang, Y. Chen, J. Wu, W. Yang, H. Long, Z. Ying, X. Yang, J. Sheng, B. Yan, J. Ye, NiO x ‐Seeded Self‐Assembled Monolayers as Highly Hole‐Selective Passivating Contacts for Efficient Inverted Perovskite Solar Cells, Solar RRL. 5 (2021) 2100663. https://doi.org/10.1002/solr.202100663.
[27] M. Ozaki, Y. Ishikura, M.A. Truong, J. Liu, I. Okada, T. Tanabe, S. Sekimoto, T. Ohtsuki, Y. Murata, R. Murdey, A. Wakamiya, Iodine-rich mixed composition perovskites optimised for tin(iv) oxide transport layers: The influence of halide ion ratio, annealing time, and ambient air aging on solar cell performance, Journal of Materials Chemistry A. 7 (2019) 16947–16953. https://doi.org/10.1039/c9ta02142f.
[28] A. Al-Ashouri, A. Magomedov, M. Roß, M. Jošt, M. Talaikis, G. Chistiakova, T. Bertram, J.A. Márquez, E. Köhnen, E. Kasparavičius, S. Levcenco, L. Gil-Escrig, C.J. Hages, R. Schlatmann, B. Rech, T. Malinauskas, T. Unold, C.A. Kaufmann, L. Korte, G. Niaura, V. Getautis, S. Albrecht, Conformal monolayer contacts with lossless interfaces for perovskite single junction and monolithic tandem solar cells, Energy and Environmental Science. 12 (2019) 3356–3369. https://doi.org/10.1039/c9ee02268f.
[29] F. Yang, J. Liu, H.E. Lim, Y. Ishikura, K. Shinokita, Y. Miyauchi, A. Wakamiya, Y. Murata, K. Matsuda, High Bending Durability of Efficient Flexible Perovskite Solar Cells Using Metal Oxide Electron Transport Layer, Journal of Physical Chemistry C. 122 (2018) 17088–17095. https://doi.org/10.1021/acs.jpcc.8b05008.
[30] M. Ozaki, A. Shimazaki, M. Jung, Y. Nakaike, N. Maruyama, S. Yakumaru, A.I. Rafieh, T. Sasamori, N. Tokitoh, P. Ekanayake, Y. Murata, R. Murdey, A. Wakamiya, A Purified, Solvent‐Intercalated Precursor Complex for Wide‐Process‐Window Fabrication of Efficient Perovskite Solar Cells and Modules, Angewandte Chemie International Edition. 58 (2019) 9389–9393. https://doi.org/10.1002/anie.201902235.
[31] M. Ozaki, Y. Nakaike, A. Shimazaki, M. Jung, N. Maruyama, S. Yakumaru, A.I. Rafieh, P. Ekanayake, T. Saito, Y. Shimakawa, T. Sasamori, Y. Murata, R. Murdey, A. Wakamiya, How to Make Dense and Flat Perovskite Layers for Efficient Solar Cells: Oriented, Crystalline Perovskite Intermediates and Their Thermal Conversion, Bull Chem Soc Jpn. 92 (2019) 1972–1979. https://doi.org/10.1246/bcsj.20190241.
[32] M. Saliba, M. Stolterfoht, C.M. Wolff, D. Neher, A. Abate, Measuring Aging Stability of Perovskite Solar Cells, Joule. 2 (2018) 1019–1024. https://doi.org/10.1016/j.joule.2018.05.005.
[33] U. Rau, B. Blank, T.C.M. Müller, T. Kirchartz, Efficiency Potential of Photovoltaic Materials and Devices Unveiled by Detailed-Balance Analysis, Physical Review Applied. 7 (2017) 044016. https://doi.org/10.1103/PhysRevApplied.7.044016.
[34] S. Draguta, O. Sharia, S.J. Yoon, M.C. Brennan, Y. v. Morozov, J.S. Manser, P. v. Kamat, W.F. Schneider, M. Kuno, Rationalizing the light-induced phase separation of mixed halide organic–inorganic perovskites, Nature Communications. 8 (2017) 200. https://doi.org/10.1038/s41467-017-00284-2.
[35] W. Mao, C.R. Hall, A.S.R. Chesman, C. Forsyth, Y.B. Cheng, N.W. Duffy, T.A. Smith, U. Bach, Visualizing Phase Segregation in Mixed-Halide Perovskite Single Crystals, Angewandte Chemie - International Edition. 58 (2019) 2893–2898. https://doi.org/10.1002/anie.201810193.
[36] P. Gratia, G. Grancini, J.N. Audinot, X. Jeanbourquin, E. Mosconi, I. Zimmermann, D. Dowsett, Y. Lee, M. Grätzel, F. de Angelis, K. Sivula, T. Wirtz, M.K. Nazeeruddin, Intrinsic Halide Segregation at Nanometer Scale Determines the High Efficiency of Mixed Cation/Mixed Halide Perovskite Solar Cells, J Am Chem Soc. 138 (2016) 15821–15824. https://doi.org/10.1021/jacs.6b10049.
[37] R.E. Beal, N.Z. Hagström, J. Barrier, A. Gold-Parker, R. Prasanna, K.A. Bush, D. Passarello, L.T. Schelhas, K. Brüning, C.J. Tassone, H.G. Steinrück, M.D. McGehee, M.F. Toney, A.F. Nogueira, Structural Origins of Light-Induced Phase Segregation in Organic-Inorganic Halide Perovskite Photovoltaic Materials, Matter. 2 (2020) 207–219. https://doi.org/10.1016/j.matt.2019.11.001.
[38] T. Elmelund, B. Seger, M. Kuno, P. v. Kamat, How Interplay between Photo and Thermal Activation Dictates Halide Ion Segregation in Mixed Halide Perovskites, ACS Energy Letters. 5 (2020) 56–63. https://doi.org/10.1021/acsenergylett.9b02265.
[39] P. Nandi, Z. Li, Y. Kim, T.K. Ahn, N.G. Park, H. Shin, Stabilizing Mixed Halide Lead Perovskites against Photoinduced Phase Segregation by A-Site Cation Alloying, ACS Energy Letters. 6 (2021) 837–847. https://doi.org/10.1021/acsenergylett.0c02631.
[40] F. Fabregat-Santiago, G. Garcia-Belmonte, I. Mora-Seró, J. Bisquert, Characterization of nanostructured hybrid and organic solar cells by impedance spectroscopy, Physical Chemistry Chemical Physics. 13 (2011) 9083. https://doi.org/10.1039/c0cp02249g.