[1] D. M. Parkin, F. Bray, J. Ferlay, and P. Pisani, “Global cancer statistics, 2002,” Ca-a Cancer Journal for Clinicians, vol. 55, no. 2, pp. 74-108, Mar-Apr, 2005.
[2] A. Jemal, F. Bray, M. M. Center, J. Ferlay, E. Ward, and D. Forman, “Global Cancer Statistics,” Ca-a Cancer Journal for Clinicians, vol. 61, no. 2, pp. 69-90, Mar-Apr, 2011.
[3] J. Ferlay, H. R. Shin, F. Bray, D. Forman, C. Mathers, and D. M. Parkin, “Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008,” International Journal of Cancer, vol. 127, no. 12, pp. 2893-2917, Dec, 2010.
[4] A. Jemal, “Global Cancer Statistics (vol 61, pg 69, 2011),” Ca-a Cancer Journal for Clinicians, vol. 61, no. 2, pp. 134-134, Mar-Apr, 2011.
[5] N. M. Niehoff, E. C. Zabor, J. Satagopan, A. Widell, T. R. O'Brien, M. Zhang, N. Rothman, T. K. Grimsrud, S. K. Van den Eeden, and L. S. Engel, “Prediagnostic serum polychlorinated biphenyl concentrations and primary liver cancer: A case-control study nested within two prospective cohorts,” Environmental Research, vol. 187, pp. 11, Aug, 2020.
[6] S. Parikh, and D. Hyman, “Hepatocellular cancer: A guide for the internist,” American Journal of Medicine, vol. 120, no. 3, pp. 194-202, Mar, 2007.
[7] L. Ali, I. Wajahat, N. A. Golilarz, F. Keshtkar, and S. A. C. Bukhari, “LDA-GA-SVM: improved hepatocellular carcinoma prediction through dimensionality reduction and genetically optimized support vector machine,” Neural Computing & Applications, pp. 10.
[8] D. P. Sheng, F. C. Xu, Q. Yu, T. T. Fang, J. J. Xia, S. R. Li, and X. Wang, “A study of structural differences between liver cancer cells and normal liver cells using FTIR spectroscopy,” Journal of Molecular Structure, vol. 1099, pp. 18-23, Nov, 2015.
[9] H. M. Li, “Microcirculation of liver cancer, microenvironment of liver regeneration, and the strategy of Chinese medicine,” Chinese Journal of Integrative Medicine, vol. 22, no. 3, pp. 163-167, Mar, 2016.
[10] F. Bray, J. Ferlay, I. Soerjomataram, R. L. Siegel, L. A. Torre, and A. Jemal, “Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries,” Ca-a Cancer Journal for Clinicians, vol. 68, no. 6, pp. 394-424, Nov-Dec, 2018.
[11] H. T. Liao, T. Y. Xiong, J. J. Peng, L. Xu, M. H. Liao, Z. Zhang, Z. R. Wu, K. F. Yuan, and Y. Zeng, “Classification and Prognosis Prediction from Histopathological Images of Hepatocellular Carcinoma by a Fully Automated Pipeline Based on Machine Learning,” Annals of Surgical Oncology, vol. 27, no. 7, pp. 2359-2369, Jul, 2020.
[12] X. Cui, T. Liu, X. Xu, Z. Zhao, Y. Tian, Y. Zhao, S. Chen, Z. Wang, Y. Wang, D. Hu, S. Fu, G. Shan, J. Sun, K. Song, and Y. Zeng, “Label-free detection of multiple genitourinary cancers from urine by surface-enhanced Raman spectroscopy,” Spectrochim Acta A Mol Biomol Spectrosc, vol. 240, pp. 118543, Oct 15, 2020.
[13] B. B. Xia, H. Y. Jiang, H. L. Liu, and D. H. Yi, “A Novel Hepatocellular Carcinoma Image Classification Method Based on Voting Ranking Random Forests,” Computational and Mathematical Methods in Medicine, pp. 8, 2016.
[14] C. L. Sun, A. Xu, D. Liu, Z. W. Xiong, F. Zhao, and W. P. Ding, “Deep Learning-Based Classification of Liver Cancer Histopathology Images Using Only Global Labels,” Ieee Journal of Biomedical and Health Informatics, vol. 24, no. 6, pp. 1643-1651, Jun, 2020.
[15] M. Barone, A. Di Leo, C. Sabba, and A. Mazzocca, “The perplexity of targeting genetic alterations in hepatocellular carcinoma,” Medical Oncology, vol. 37, no. 8, pp. 5, Jul, 2020.
[16] B. Sakthisaravanan, and R. Meenakshi, “OPBS-SSHC: outline preservation based segmentation and search based hybrid classification techniques for liver tumor detection,” Multimedia Tools and Applications, pp. 27.
[17] S. Naeem, A. Ali, S. Qadri, W. K. Mashwani, N. Tairan, H. Shah, M. Fayaz, F. Jamal, C. Chesneau, and S. Anam, “Machine-Learning Based Hybrid-Feature Analysis for Liver Cancer Classification Using Fused (MR and CT) Images,” Applied Sciences-Basel, vol. 10, no. 9, pp. 22, May, 2020.
[18] V. Hemalatha, and C. Sundar, “Automatic liver cancer detection in abdominal liver images using soft optimization techniques,” Journal of Ambient Intelligence and Humanized Computing, pp. 10.
[19] N. A. Mat-Isa, M. Y. Mashor, and N. H. Othman, “An automated cervical pre-cancerous diagnostic system,” Artificial Intelligence in Medicine, vol. 42, no. 1, pp. 1-11, Jan, 2008.
[20] H. T. Liao, Y. X. Long, R. J. Han, W. Wang, L. Xu, M. H. Liao, Z. Zhang, Z. R. Wu, X. Q. Shang, X. F. Li, J. J. Peng, K. F. Yuan, and Y. Zeng, “Deep learning-based classification and mutation prediction from histopathological images of hepatocellular carcinoma,” Clinical and Translational Medicine, pp. 8.
[21] F. Kanavati, G. Toyokawa, S. Momosaki, M. Rambeau, Y. Kozuma, F. Shoji, K. Yamazaki, S. Takeo, O. Iizuka, and M. Tsuneki, “Weakly-supervised learning for lung carcinoma classification using deep learning,” Scientific Reports, vol. 10, no. 1, pp. 11, Jun, 2020.
[22] H. Sun, X. X. Zeng, T. Xu, G. Peng, and Y. T. Ma, “Computer-Aided Diagnosis in Histopathological Images of the Endometrium Using a Convolutional Neural Network and Attention Mechanisms,” Ieee Journal of Biomedical and Health Informatics, vol. 24, no. 6, pp. 1664-1676, Jun, 2020.
[23] A. Kumar, S. K. Singh, S. Saxena, K. Lakshmanan, A. K. Sangaiah, H. Chauhan, S. Shrivastava, and R. K. Singh, “Deep feature learning for histopathological image classification of canine mammary tumors and human breast cancer,” Information Sciences, vol. 508, pp. 405-421, Jan, 2020.
[24] L. Q. Zhou, J. Y. Wang, S. Y. Yu, G. G. Wu, Q. Wei, Y. B. Deng, X. L. Wu, X. W. Cui, and C. F. Dietrich, “Artificial intelligence in medical imaging of the liver,” World Journal of Gastroenterology, vol. 25, no. 6, pp. 672-682, Feb, 2019.
[25] J. Li, Y. R. Wu, N. Y. Shen, J. W. Zhang, E. L. Chen, J. Sun, Z. Q. Deng, and Y. C. Zhang, “A fully automatic computer-aided diagnosis system for hepatocellular carcinoma using convolutional neural networks,” Biocybernetics and Biomedical Engineering, vol. 40, no. 1, pp. 238-248, Jan-Mar, 2020.
[26] S. A. Azer, “Deep learning with convolutional neural networks for identification of liver masses and hepatocellular carcinoma: A systematic review,” World Journal of Gastrointestinal Oncology, vol. 11, no. 12, pp. 1218-1230, Dec, 2019.
[27] L. Q. Lu, and B. J. Daigle, “Prognostic analysis of histopathological images using pre-trained convolutional neural networks: application to hepatocellular carcinoma,” Peerj, vol. 8, pp. 25, Mar, 2020.
[28] V. Sureshkumar, V. Chandrasekar, R. Venkatesan, and R. K. Prasad, “Improved performance accuracy in detecting tumor in liver using deep learning techniques,” Journal of Ambient Intelligence and Humanized Computing, pp. 8.
[29] H. X. Lin, C. Wei, G. X. Wang, H. Chen, L. S. Lin, M. Ni, J. X. Chen, and S. M. Zhuo, “Automated classification of hepatocellular carcinoma differentiation using multiphoton microscopy and deep learning,” Journal of Biophotonics, vol. 12, no. 7, pp. 7, Jul, 2019.
[30] R. V. M. da N?brega, P. P. Rebou?as, M. B. Rodrigues, S. P. P. da Silva, C. Dourado, and V. H. C. de Albuquerque, “Lung nodule malignancy classification in chest computed tomography images using transfer learning and convolutional neural networks,” Neural Computing & Applications, vol. 32, no. 15, pp. 11065-11082, Aug, 2020.
[31] H. Q. Zhang, L. Han, K. Chen, Y. L. Peng, and J. L. Lin, “Diagnostic Efficiency of the Breast Ultrasound Computer-Aided Prediction Model Based on Convolutional Neural Network in Breast Cancer,” Journal of Digital Imaging, pp. 6.
[32] B. S. A. Gazioglu, and M. E. Kamasak, “Effects of objects and image quality on melanoma classification using deep neural networks,” Biomedical Signal Processing and Control, vol. 67, pp. 9, May, 2021.
[33] M. Takeuchi, T. Seto, M. Hashimoto, N. Ichihara, Y. Morimoto, H. Kawakubo, T. Suzuki, M. Jinzaki, Y. Kitagawa, H. Miyata, and Y. Sakakibara, “Performance of a deep learning-based identification system for esophageal cancer from CT images,” Esophagus, vol. 18, no. 3, pp. 612-620, Jul, 2021.
[34] Y. Celik, M. Talo, O. Yildirim, M. Karabatak, and U. R. Acharya, “Automated invasive ductal carcinoma detection based using deep transfer learning with whole-slide images,” Pattern Recognition Letters, vol. 133, pp. 232-239, May, 2020.
[35] N. Wu, J. Phang, J. Park, Y. Q. Shen, Z. Huang, M. Zorin, S. Jastrzebski, T. Fevry, J. Katsnelson, E. Kim, S. Wolfson, U. Parikh, S. Gaddam, L. L. Y. Lin, K. Ho, J. D. Weinstein, B. Reig, Y. M. Gao, H. Toth, K. Pysarenko, A. Lewin, J. Lee, K. Airola, E. Mema, S. Chung, E. Hwang, N. Samreen, S. G. Kim, L. Heacock, L. Moy, K. Cho, and K. J. Geras, “Deep Neural Networks Improve Radiologists Performance in Breast Cancer Screening,” Ieee Transactions on Medical Imaging, vol. 39, no. 4, pp. 1184-1194, Apr, 2020.
[36] J. Niu, H. Li, C. Zhang, and D. A. Li, “Multi-scale attention-based convolutional neural network for classification of breast masses in mammograms,” Medical Physics, pp. 15.
[37] F. Shahidi, S. M. Daud, H. Abas, N. A. Ahmad, and N. Maarop, “Breast Cancer Classification Using Deep Learning Approaches and Histopathology Image: A Comparison Study,” Ieee Access, vol. 8, pp. 187531-187552, 2020.
[38] X. Li, X. Shen, Y. X. Zhou, X. H. Wang, and T. Q. Li, “Classification of breast cancer histopathological images using interleaved DenseNet with SENet (IDSNet),” Plos One, vol. 15, no. 5, pp. 13, May, 2020.
[39] A. A. Jeny, A. N. M. Sakib, M. S. Junayed, K. A. Lima, I. Ahmed, and M. B. Islam, "SkNet: A Convolutional Neural Networks Based Classification Approach for Skin Cancer Classes," ICCIT 2020 - 23rd International Conference on Computer and Information Technology, Proceedings.
[40] M. Xu, Z. Liu, Z. Wang, L. Sun, and Z. Liang, "The diagnosis of Alzheimer's disease based on enhanced residual neutral network," Proceedings - 2019 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery, CyberC 2019. pp. 405-411.