[1] Shanklin J, Cahoon EB. Desaturation and related modifications of fatty acids. Annu Rev Plant Physiol Plant Mol Biol. 1998. https://doi.org/10.1146/annurev.arplant.49.1.611.
[2] Okuley J, Lightner J, Feldmann K, Yadav N, Lark E, Browse J. Arabidopsis FAD2 gene encodes the enzyme that is essential for polyunsaturated lipid synthesis. Plant Cell. 1994. https://doi.org/10.1105/tpc.6.1.147.
[3] Jin UH, Lee JW, Chung YS, Lee JH, Yi YB, Kim YK, Hyung NI, Pyee JH, Chung CH. Characterization and temporal expression of a ω-6 fatty acid desaturase cDNAfrom sesame (Sesamum indicum L.) seeds. Plant Sci. 2001. https://doi.org/10.1016/S0168-9452(01)00489-7.
[4] Jung JH, Kim H, Go YS, Lee SB, Hur CG, Kim HU, Suh MC. Identification of functional BrFAD2-1 gene encoding microsomal delta-12 fatty acid desaturase from Brassica rapa and development of Brassica napus containing high oleic acid contents. Plant Cell Rep. 2011. https://doi.org/10.1007/s00299-011-1095-x.
[5] Li LY, Wang XL, Gai JY, Yu DY. Molecular cloning and characterization of a novel microsomal oleate desaturase gene from soybean. J Plant Physiol. 2007. https://doi.org/10.1016/j.jplph.2006.08.007.
[6] Martínez-Rivas JM, Sperling P, Luhs W, Heinz E. Spatial and temporal regulation of three different microsomal oleate desaturase genes (FAD2) from normal-type and high-oleic varieties of sunflower (Helianthus annuus L.). Mol Breed. 2001. https://doi.org/10.1023/A:1013324329322.
[7] Liu Q, Singh SP, Brubaker CL, Sharp PJ, Green AG, Marshall D. Molecular cloning and expression of a cDNA encoding a microsomal ω-6 fatty acid desaturase from cotton (Gossypium hirsutum). Aust J Plant Physiol. 1999. https://doi.org/10.1071/PP98118.
[8] Pirtle IL, Kongcharoensuntorn W, Nampaisansuk M, Knesek JE, Chapman KD, Pirtle RM. Molecular cloning and functional expression of the gene for a cotton Δ12 fatty acid desaturase (FAD2). Biochim Biophys Acta. 2001. https://doi.org/10.1016/S0167-4781(01)00312-8.
[9] Dar AA, Choudhury AR, Kancharla PK, Arumugam N. The FAD2 gene in plants: occurrence, regulation, and role. Front Plant Sci. 2017. https://doi.org/10.3389/fpls.2017.01789.
[10] Matteucci M, D'Angeli S, Errico S, Lamanna R, Perrotta G, Altamura MM. Cold affects the transcription of fatty acid desaturases and oil quality in the fruit of Olea europaea L. genotypes with different cold hardiness. J Exp Bot 2011. https://doi.org/10.1093/jxb/err013.
[11] Kargiotidou A, Deli D, Galanopoulou D, Tsaftaris A, Farmaki T. Low temperature and light regulate delta 12 fatty acid desaturases (FAD2) at a transcriptional level in cotton (Gossypium hirsutum). J Exp Bot. 2008. https://doi.org/10.1093/jxb/ern065.
[12] Liu F, Zhao YP, Zhu HG, Zhu QH, Sun J. Simultaneous silencing of GhFAD2-1 and GhFATB enhances the quality of cottonseed oil with high oleic acid. J Plant Physiol. 2017. https://doi.org/10.1016/j.jplph.2017.06.001.
[13] Wells R, Trick M, Soumpourou E, Clissold L, Morgan C, Werner P, Gibbard C, Clarke M, Jennaway R, Bancroft I. The control of seed oil polyunsaturate content in the polyploid crop species Brassica napus. Mol Breed. 2014. https://doi.org/10.1007/s11032-013-9954-5.
[14] Qu J, Mao HZ, Chen W, Gao SQ, Bai YN, Sun YW, Geng YF, Ye J. Development of marker-free transgenic Jatrophaplants with increased levels of seed oleic acid. Biotech Biofuels. 2012. https://doi.org/10.1186/1754-6834-5-10.
[15] Pham AT, Shannon JG, Bilyeu KD. Combinations of mutant FAD2 and FAD3 genes to produce high oleic acid and low linolenic acid soybean oil. Theor Appl Genet. 2012. https://doi.org/10.1007/s00122-012-1849-z.
[16] Lu C, Napier JA, Clemente TE, Cahoon EB. New frontiers in oilseed biotechnology: meeting the global demand for vegetable oils for food, feed, biofuel, and industrial applications. Curr Opin Biotechnol. 2011. https://doi.org/10.1016/j.copbio.2010.11.006.
[17] Piffanelli P, Ross JH, Murphy DJ. Intra- and extracellular lipid composition and associated gene expression patterns during pollen development in Brassica napus. Plant J. 1997. https://doi.org/10.1046/j.1365-313X.1997.11030549.x.
[18] Dobritsa AA, Shrestha J, Morant M, Pinot F, Matsuno M, Swanson R, Møller BL, Preuss D. CYP704B1 is along-chain fatty acid ω-hydroxylase essential for sporopollenin synthesis in pollen of Arabidopsis. Plant Physiol. 2009. https://doi.org/10.1104/pp.109.144469.
[19] Jiang J, Zhang Z, Cao J. Pollen wall development: the associated enzymes and metabolic pathways. Plant Biol (Stuttg). 2013. https://doi: 10.1111/j.1438-8677.2012.00706.x.
[20] Shi J, Cui M, Yang L, Kim YJ, Zhang D. Genetic and biochemical mechanisms of pollen wall development. Trends Plant Sci. 2015. https://doi: 10.1016/j.tplants.2015.07.010.
[21] Zhang D, Shi J, Yang X. Role of lipid metabolism in plant pollen exine development. In: Nakamura Y, Li-Beisson Y. (eds) Lipids in plant and algae development. Subcellular Biochemistry, 2016. https://doi.org/10.1007/978-3-319-25979-6_13.
[22] Aarts MG, Hodge R, Kalantidis K, Florack D, Wilson ZA, Mulligan BJ, Stiekema WJ, Scott R, Pereira A. The Arabidopsis MALE STERILITY 2 protein shares similarity with reductases in elongation/condensation complexes. Plant J. 1997. https://doi.org/10.1046/j.1365-313X.1997.00615.x
[23] Chen W, Yu XH, Zhang K, Shi J, De Oliveira S, Schreiber L, Shanklin J, Zhang D. Male Sterile2 encodes a plastid-localized fatty acyl carrier protein reductase required for pollen exine development in Arabidopsis. Plant Physiol. 2011. https://doi.org/10.1104/pp.111.181693.
[24] Ariizumi T, Hatakeyama K, Hinata K, Inatsugi R, Nishida I, Sato S, Kato T, Tabata S, Toriyama K. Disruption of the novel plant protein NEF1 affects lipid accumulation in the plastids of the tapetum and exine formation of pollen, resulting in male sterility in Arabidopsis thaliana. Plant J. 2004. https://doi.org/10.1111/j.1365-313X.2004.02118.x.
[25] Morant M, Jørgensen K, Schaller H, Pinot F, Møller BL, Werck-Reichhart D, Bak S. CYP703 is an ancient cytochrome P450 in land plants catalyzing in-chain hydroxylation of lauric acid to provide building blocks for sporopollenin synthesis in pollen. Plant Cell. 2007. https://doi.org/10.1105/tpc.106.045948.
[26] Li H, Pinot F, Sauveplane V, Werck-Reichhart D, Diehl P, Schreiber L, Franke R, Zhang P, Chen L, Gao YW, et al. Cytochrome P450 family member CYP704B2 catalyzes the omega-hydroxylation of fatty acids and is required for anther cutin biosynthesis and pollen exine formation in rice. Plant Cell. 2010. https://doi.org/10.1105/tpc.109.070326.
[27] de Azevedo Souza C, Kim SS, Koch S, Kienow L, Schneider K, McKim SM, Haughn GW, Kombrink E, Douglas CJ. A novel fatty Acyl-CoA Synthetase is required for pollen development and sporopollenin biosynthesis in Arabidopsis. Plant Cell. 2009. https://doi.org/10.1105/tpc.108.062513.
[28] Ariizumi T, Hatakeyama K, Hinata K, Sato S, Kato T, Tabata S, Toriyama K. A novel male-sterile mutant of Arabidopsis thaliana, faceless pollen-1, produces pollen with a smooth surface and an acetolysis-sensitive exine. Plant Mol Biol. 2003. https://doi.org/10.1023/B:PLAN.0000009269.97773.70.
[29] Jung KH, Han MJ, Lee DY, Lee YS, Schreiber L, Franke R, Faust A, Yephremov A, Saedler H, Kim YW, Hwang I, An G. Wax-deficient anther1 is involved in cuticle and wax production in rice anther walls and is required for pollen development. Plant Cell. 2006. https://doi.org/10.1105/tpc.106.042044.
[30] Smirnova A, Leide J, Riederer M. Deficiency in a very-long-chain fatty acid β-ketoacyl-coenzyme a synthase of tomato impairs microgametogenesis and causes floral organ fusion. Plant Physiol. 2013. https://doi.org/10.1104/pp.112.206656.
[31] Shi J, Tan H, Yu XH, Liu Y, Liang W, Ranathunge K, Franke RB, Schreiber L, Wang Y, Kai G, et al. Defective pollen wall is required for anther and microspore development in rice and encodes a fatty acyl carrier protein reductase. Plant Cell. 2011. https://doi.org/10.1105/tpc.111.087528.
[32] Domergue F, Vishwanath SJ, Joubès J, Ono J, Lee JA, Bourdon M, Alhattab R, Lowe C, Pascal S, Lessire R, Rowland O. Three Arabidopsis fatty acyl-coenzyme A reductases, FAR1, FAR4, and FAR5, generate primary fatty alcohols associated with suberin deposition. Plant Physiol. 2010. https://doi.org/10.1104/pp.110.158238.
[33] Kim J, Jung JH, Lee SB, Go YS, Kim HJ, Cahoon R, Markham JE, Cahoon EB, Suh MC. Arabidopsis 3-ketoacyl-coenzyme a synthase9 is involved in the synthesis of tetracosanoic acids as precursors of cuticular waxes, suberins, sphingolipids, and phospholipids. Plant Physiol. 2013. https://doi.org/10.1104/pp.112.210450.
[34] Zhang DS, Liang W, Yin C, Zong J, Gu F, Zhang D. OsC6, encoding a lipid transfer protein, is required for postmeiotic anther development in rice. Plant Physiol. 2010. https://doi.org/10.1104/pp.110.158865.
[35] Zhang T, Hu Y, Jiang W, Fang L, Guan X, Chen J, Zhang J, Saski CA, Scheffler BE, Stelly DM, et al. Sequencing of allotetraploid cotton (Gossypium hirsutum L. acc. TM-1) provides a resource for fiber improvement. Nat Biotechnol. 2015. https://doi.org/10.1038/nbt.3207.
[36] Paterson AH, Wendel JF, Gundlach H, Guo H, Jenkins J, Jin D, Llewellyn D, Showmaker KC, Shu S, Udall J, et al. Repeated polyploidization of Gossypium genomes and the evolution of spinnable cotton fibres. Nature. 2012. https://doi.org/10.1038/nature11798.
[37] Li F, Fan G, Wang K, Sun F, Yuan Y, Song G, Li Q, Ma Z, Lu C, Zou C, et al. Genome sequence of the cultivated cotton Gossypium arboretum. Nat Genet. 2014. https://doi.org/10.1038/ng.2987.
[38] Liu F, Zhao YP, Wang XD, Li YJ, Sun J. Isolation and functional characterization of seed-specific FAD2-1 promoter from cotton (Gossypium hirsutum L). J Plant Biochem Biotechnol. 2015. https://doi.org/10.1007/s13562-014-0284-4.
[39] An X, Dong Z, Tian Y, Xie K, Wu S, Zhu T, Zhang D, Zhou Y, Niu C, Ma B, et al. ZmMs30 encoding a novel GDSL Lipase is essential for male fertility and valuable for hybrid breeding in maize. Mol Plant. 2019. https://doi.org/10.1016/j.molp.2019.01.011.
[40] Huang AH, Moreau RA, Liu KD. Development and properties of a wax ester hydrolase in the cotyledons of Jojoba seedlings. Plant Physiol. 1978. https://doi.org/10.1104/pp.61.3.339.
[41] Bonaventure G, Beisson F, Ohlrogge J, Pollard M. Analysis of the aliphatic monomer composition of polyesters associated with Arabidopsis epidermis: occurrence of octadeca-cis-6,cis-9-diene-1,18-dioate as the major component. Plant J. 2004. https://doi.org/10.1111/j.1365-313X.2004.02258.x.
[42] Franke R, Briesen I, Wojciechowski T, Faust A, Yephremov A, Nawrath C, Schreiber L. Apoplastic polyesters in Arabidopsis surface tissues – A typical suberin and a particular cutin. Phytochem. 2005. https://doi.org/10.1016/j.phytochem.2005.09.027.
[43] Cahoon EB, Ripp KG, Hall SE, McGonigle B. Transgenic production of epoxy fatty acids by expression of a cytochrome P450 enzyme from Euphorbia lagascae seed. Plant Physiol. 2002. https://doi.org/10.1104/pp.010768.
[44] Singh S, Thomaeus S, Lee M, Stymne S, Green A. Transgenic expression of a Δ12-epoxygenase gene in Arabidopsis seeds inhibits accumulation of linoleic acid. Planta. 2001. https://doi.org/10.1007/s004250000456.
[45] Broun P, Somerville C. Accumulation of ricinoleic, lesquerolic, and densipolic acids in seeds of transgenic Arabidopsis plants that express a fatty acyl hydroxylase cDNA from castor bean. Plant Physiol. 1997. https://doi.org/10.1104/pp.113.3.933.
[46] Lunn D, Wallis JG, Browse J. Tri-hydroxy-triacylglycerol is efficiently produced by position-specific castor acyltransferases. Plant Physiol. 2019. https://doi: 10.1104/pp.18.01409
[47] Miquel M, James D, Dooner H, Browse J. Arabidopsis requires polyunsaturated lipids for low temperature survival. Proc Natl Acad Sci USA. 1993. https://doi.org/10.1073/pnas.90.13.6208.
[48] Xie DX, Feys BF, James S, Nieto-Rostro M, Turner JG. COI1: an Arabidopsis gene required for jasmonate-regulated defense and fertility. Science. 1998. https://doi.org/10.1126/science.280.5366.1091.
[49] Sanders PM, Lee PY, Biesgen C, Boone JD, Beals TP, Weiler EW, Goldberg RB. The Arabidopsis DELAYED DEHISCENCE 1 gene encodes an enzyme in the jasmonic acid synthesis pathway. Plant Cell. 2000. https://doi.org/10.1105/tpc.12.7.1041.
[50] Stintzi A, Browse, J. The Arabidopsis male-sterile mutant, opr3, lacks the 12-oxophytodienoic acid reductase required for jasmonate synthesis. Proc Natl Acad Sci USA. 2000. https://doi.org/10.1073/pnas.190264497.
[51] McConn M, Browse J. The critical requirement for linolenic acid is pollen development, not photosynthesis, in an Arabidopsis mutant. Plant Cell (1996) 8:403-416.
[52] Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, Salzberg SL, Wold BJ, Pachter L. Transcript assembly and quantification by RNA-seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol. 2010. https://doi.org/10.1038/nbt.1621.
[53] Jin S, Zhang X, Nie Y, Guo X, Liang S, Zhu H. Identification of a novel elite genotype for in vitro culture and genetic transformation of cotton. Biologia Plantarum. 2006. https://doi.org/10.1007/s10535-006-0082-5.
[54] Li-Beisson Y, Shorrosh B, Beisson F, Andersson MX, Arondel V, Bates PD, Baud S, Bird D, Debono A, Durrett TP, et al. Acyl-lipid metabolism. Arabidopsis Book 11, e0161. 2013. https://doi.org/10.1199/tab.0161.
[55] Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods. 2001. https://doi.org/10.1006/meth.2001.1262.