1. Campbell, F. et al. Increased transmissibility and global spread of SARS-CoV-2 variants of concern as at June 2021. Eurosurveillance 26, 2100509 (2021).
2. Planas, D. et al. Considerable escape of SARS-CoV-2 Omicron to antibody neutralization. Nature d41586-021-03827–2 (2021) doi:10.1038/d41586-021-03827-2.
3. Bruel, T. et al. Serum neutralization of SARS-CoV-2 Omicron sublineages BA.1 and BA.2 in patients receiving monoclonal antibodies. Nat. Med. 28, 1297–1302 (2022).
4. Tegally, H. et al. Emergence of SARS-CoV-2 Omicron lineages BA.4 and BA.5 in South Africa. Nat. Med. 1–1 (2022) doi:10.1038/s41591-022-01911-2.
5. Touret, F., Baronti, C., Bouzidi, H. S. & Lamballerie, X. de. In vitro evaluation of therapeutic antibodies against a SARS-CoV-2 Omicron B.1.1.529 isolate. 2022.01.01.474639 https://www.biorxiv.org/content/10.1101/2022.01.01.474639v1 (2022) doi:10.1101/2022.01.01.474639.
6. Dong, J. et al. Genetic and structural basis for SARS-CoV-2 variant neutralization by a two-antibody cocktail. Nat. Microbiol. 6, 1233–1244 (2021).
7. Starr, T. N. et al. SARS-CoV-2 RBD antibodies that maximize breadth and resistance to escape. Nature 597, 97–102 (2021).
8. Kaptein, S. J. F. et al. A pan-serotype dengue virus inhibitor targeting the NS3-NS4B interaction. Nature (2021) doi:10.1038/s41586-021-03990-6.
9. Delang, L. et al. The viral capping enzyme nsP1: a novel target for the inhibition of chikungunya virus infection. Sci. Rep. 6, 31819 (2016).
10. Touret, F. et al. Phylogenetically based establishment of a dengue virus panel, representing all available genotypes, as a tool in dengue drug discovery. Antiviral Res. 168, 109–113 (2019).
11. Touret, F., Baronti, C., Bouzidi, H. S. & de Lamballerie, X. In vitro evaluation of therapeutic antibodies against a SARS-CoV-2 Omicron B.1.1.529 isolate. Sci. Rep. 12, 4683 (2022).
12. Touret, F. et al. In vitro screening of a FDA approved chemical library reveals potential inhibitors of SARS-CoV-2 replication. Sci. Rep. 10, 13093 (2020).
13. Touret, F. et al. Preclinical evaluation of Imatinib does not support its use as an antiviral drug against SARS-CoV-2. Antiviral Res. 193, 105137 (2021).
14. Weiss, A. et al. Niclosamide shows strong antiviral activity in a human airway model of SARS-CoV-2 infection and a conserved potency against the Alpha (B.1.1.7), Beta (B.1.351) and Delta variant (B.1.617.2). PLOS ONE 16, e0260958 (2021).
15. Shannon, A. et al. Rapid incorporation of Favipiravir by the fast and permissive viral RNA polymerase complex results in SARS-CoV-2 lethal mutagenesis. Nat. Commun. 11, 4682 (2020).
16. VanBlargan, L. A. et al. An infectious SARS-CoV-2 B.1.1.529 Omicron virus escapes neutralization by therapeutic monoclonal antibodies. Nat. Med. 1–6 (2022) doi:10.1038/s41591-021-01678-y.
17. Cameroni, E. et al. Broadly neutralizing antibodies overcome SARS-CoV-2 Omicron antigenic shift. Nature 602, 664–670 (2022).
18. Cathcart, A. L. et al. The dual function monoclonal antibodies VIR-7831 and VIR-7832 demonstrate potent in vitro and in vivo activity against SARS-CoV-2. http://biorxiv.org/lookup/doi/10.1101/2021.03.09.434607 (2021) doi:10.1101/2021.03.09.434607.
19. Takashita, E. et al. Efficacy of Antiviral Agents against the SARS-CoV-2 Omicron Subvariant BA.2. N. Engl. J. Med. 386, 1475–1477 (2022).
20. Tuekprakhon, A. et al. Further antibody escape by Omicron BA.4 and BA.5 from vaccine and BA.1 serum. 2022.05.21.492554 (2022) doi:10.1101/2022.05.21.492554.
21. Gupta, A. et al. Early Treatment for Covid-19 with SARS-CoV-2 Neutralizing Antibody Sotrovimab. N. Engl. J. Med. 385, 1941–1950 (2021).
22. Mahase, E. Covid-19: AstraZeneca says its antibody drug AZD7442 is effective for preventing and reducing severe illness. BMJ 375, n2860 (2021).
23. DRIOUICH, J.-S. et al. Activity of Tixagevimab/Cilgavimab against the Omicron variant of SARS-CoV-2 in a hamster model. (2022) doi:10.21203/rs.3.rs-1399448/v1.
24. Research, C. for D. E. and. FDA authorizes revisions to Evusheld dosing. FDA (2022).