1 Grimaud, A. et al. Activating lattice oxygen redox reactions in metal oxides to catalyse oxygen evolution. Nat. Chem. 9, 457-465 (2017).
2 Grimaud, A., Hong, W. T., Shao-Horn, Y. & Tarascon, J. M. Anionic redox processes for electrochemical devices. Nat. Mater. 15, 121-126 (2016).
3 Sathiya, M. et al. Reversible anionic redox chemistry in high-capacity layered-oxide electrodes. Nat. Mater. 12, 827-835 (2013).
4 Assat, G. & Tarascon, J.-M. Fundamental understanding and practical challenges of anionic redox activity in Li-ion batteries. Nat. Energy 3, 373-386 (2018).
5 Li, B. & Xia, D. Anionic Redox in Rechargeable Lithium Batteries. Adv. Mater. 29, 1701054 (2017).
6 Kim, D., Cho, M. & Cho, K. Rational Design of Na(Li1/3Mn2/3)O2 Operated by Anionic Redox Reactions for Advanced Sodium-Ion Batteries. Adv. Mater. 29, 1701788 (2017).
7 Maitra, U. et al. Oxygen redox chemistry without excess alkali-metal ions in Na2/3[Mg0.28Mn0.72]O2. Nat. Chem. 10, 288-295 (2018).
8 Lee, J. et al. Reversible Mn2+/Mn4+ double redox in lithium-excess cathode materials. Nature 556, 185-190 (2018).
9 Lee, J. et al. Mitigating oxygen loss to improve the cycling performance of high capacity cation-disordered cathode materials. Nat. Commun. 8, 981 (2017).
10 Ji, H. et al. Ultrahigh power and energy density in partially ordered lithium-ion cathode materials. Nat. Energy 5, 213-221 (2020).
11 Zhan, C. et al. Enabling the high capacity of lithium-rich antifluorite lithium iron oxide by simultaneous anionic and cationic redox. Nat. Energy 2, 963-971 (2017).
12 Luo, K. et al. Charge-compensation in 3d-transition-metal-oxide intercalation cathodes through the generation of localized electron holes on oxygen. Nat. Chem. 8, 684-691 (2016).
13 Seo, D.-H. et al. The structural and chemical origin of the oxygen redox activity in layered and cation-disordered Li-excess cathode materials. Nat. Chem. 8, 692-697 (2016).
14 Song, J.-H. et al. Anionic Redox Activity Regulated by Transition Metal in Lithium-Rich Layered Oxides. Adv. Energy Mater. 10, 2001207 (2020).
15 Xie, Y., Saubanère, M. & Doublet, M. L. Requirements for reversible extra-capacity in Li-rich layered oxides for Li-ion batteries. Energy Environ. Sci. 10, 266-274 (2017).
16 Gent, W. E. et al. Coupling between oxygen redox and cation migration explains unusual electrochemistry in lithium-rich layered oxides. Nat. Commun. 8, 2091 (2017).
17 Hong, J. et al. Metal–oxygen decoordination stabilizes anion redox in Li-rich oxides. Nat. Mater. 18, 256-265 (2019).
18 Ku, K. et al. A new lithium diffusion model in layered oxides based on asymmetric but reversible transition metal migration. Energy Environ. Sci. 13, 1269-1278 (2020).
19 Yin, W. et al. Structural evolution at the oxidative and reductive limits in the first electrochemical cycle of Li1.2Ni0.13Mn0.54Co0.13O2. Nat. Commun. 11, 1252 (2020).
20 Eum, D. et al. Voltage decay and redox asymmetry mitigation by reversible cation migration in lithium-rich layered oxide electrodes. Nat. Mater. 19, 419-427 (2020).
21 Ben Yahia, M., Vergnet, J., Saubanère, M. & Doublet, M.-L. Unified picture of anionic redox in Li/Na-ion batteries. Nat. Mater. 18, 496-502 (2019).
22 Vergnet, J., Saubanère, M., Doublet, M.-L. & Tarascon, J.-M. The Structural Stability of P2-Layered Na-Based Electrodes during Anionic Redox. Joule 4, 420-434 (2020).
23 Assat, G. et al. Fundamental interplay between anionic/cationic redox governing the kinetics and thermodynamics of lithium-rich cathodes. Nat. Commun. 8, 2219 (2017).
24 Assat, G., Delacourt, C., Corte, D. A. D. & Tarascon, J.-M. Editors' Choice—Practical Assessment of Anionic Redox in Li-Rich Layered Oxide Cathodes: A Mixed Blessing for High Energy Li-Ion Batteries. J. Electrochem. Soc. 163, A2965-A2976 (2016).
25 Assat, G., Iadecola, A., Delacourt, C., Dedryvère, R. & Tarascon, J.-M. Decoupling Cationic–Anionic Redox Processes in a Model Li-Rich Cathode via Operando X-ray Absorption Spectroscopy. Chem. Mater. 29, 9714-9724 (2017).
26 McCalla, E. et al. Visualization of O-O peroxo-like dimers in high-capacity layered oxides for Li-ion batteries. Science 350, 1516 (2015).
27 Chen, H. & Islam, M. S. Lithium Extraction Mechanism in Li-Rich Li2MnO3 Involving Oxygen Hole Formation and Dimerization. Chem. Mater. 28, 6656-6663 (2016).
28 Chen, Z., Li, J. & Zeng, X. C. Unraveling Oxygen Evolution in Li-Rich Oxides: A Unified Modeling of the Intermediate Peroxo/Superoxo-like Dimers. J. Am. Chem. Soc. 141, 10751-10759 (2019).
29 Rong, X. et al. Structure-Induced Reversible Anionic Redox Activity in Na Layered Oxide Cathode. Joule 2, 125-140 (2018).
30 Mortemard de Boisse, B. et al. Highly Reversible Oxygen-Redox Chemistry at 4.1 V in Na4/7−x[□1/7Mn6/7]O2 (□: Mn Vacancy). Adv. Energy Mater. 8, 1800409 (2018).
31 Song, B. et al. Understanding the Low-Voltage Hysteresis of Anionic Redox in Na2Mn3O7. Chem. Mater. 31, 3756-3765 (2019).
32 Delmas, C., Fouassier, C. & Hagenmuller, P. Structural classification and properties of the layered oxides. Physica B+C 99, 81-85 (1980).
33 Guo, S. et al. Understanding sodium-ion diffusion in layered P2 and P3 oxides via experiments and first-principles calculations: a bridge between crystal structure and electrochemical performance. NPG Asia Mater. 8, e266-e266 (2016).
34 Du, K. et al. Exploring reversible oxidation of oxygen in a manganese oxide. Energy Environ. Sci. 9, 2575-2577 (2016).
35 House, R. A. et al. Superstructure control of first-cycle voltage hysteresis in oxygen-redox cathodes. Nature 577, 502-508 (2020).
36 Cao, X. et al. Restraining Oxygen Loss and Suppressing Structural Distortion in a Newly Ti-Substituted Layered Oxide P2-Na0.66Li0.22Ti0.15Mn0.63O2. ACS Energy Lett. 4, 2409-2417 (2019).
37 Yang, W. & Devereaux, T. P. Anionic and cationic redox and interfaces in batteries: Advances from soft X-ray absorption spectroscopy to resonant inelastic scattering. J. Power Sources 389, 188-197 (2018).
38 Zhuo, Z. et al. Spectroscopic Signature of Oxidized Oxygen States in Peroxides. J. Phys. Chem. Lett. 9, 6378-6384 (2018).
39 Somerville, J. W. et al. Nature of the “Z”-phase in layered Na-ion battery cathodes. Energy Environ. Sci. 12, 2223-2232 (2019).
40 Yabuuchi, N. et al. New O2/P2-type Li-Excess Layered Manganese Oxides as Promising Multi-Functional Electrode Materials for Rechargeable Li/Na Batteries. Adv. Energy Mater. 4, 1301453 (2014).
41 Singh, G., López del Amo, J. M., Galceran, M., Pérez-Villar, S. & Rojo, T. Structural evolution during sodium deintercalation/intercalation in Na2/3[Fe1/2Mn1/2]O2. J. Mater. Chem. A 3, 6954-6961 (2015).
42 Hong, J. et al. Structural evolution of layered Li1.2Ni0.2Mn0.6O2 upon electrochemical cycling in a Li rechargeable battery. J. Mater. Chem. 20, 10179-10186 (2010).
43 Myeong, S. et al. Understanding voltage decay in lithium-excess layered cathode materials through oxygen-centred structural arrangement. Nat. Commun. 9, 3285 (2018).
44 Sathiya, M. et al. Origin of voltage decay in high-capacity layered oxide electrodes. Nat. Mater. 14, 230-238 (2015).
45 Huang, Q. et al. Tailoring alternating heteroepitaxial nanostructures in Na-ion layered oxide cathodes via an in-situ composition modulation route. Nano Energy 44, 336-344 (2018).
46 Yao, H.-R. et al. Designing Air-Stable O3-Type Cathode Materials by Combined Structure Modulation for Na-Ion Batteries. J. Am. Chem. Soc. 139, 8440-8443 (2017).
47 Rong, X. et al. Anionic Redox Reaction-Induced High-Capacity and Low-Strain Cathode with Suppressed Phase Transition. Joule 3, 503-517 (2019).
48 Sudayama, T. et al. Multiorbital Bond Formation for Stable Oxygen-Redox Reaction in Battery Electrodes. Energy Environ. Sci. 13, 1492-1500 (2020).
49 Freire, M. et al. A new active Li–Mn–O compound for high energy density Li-ion batteries. Nat. Mater. 15, 173-177 (2016).
50 Julien, C. M., Ait-Salah, A., Mauger, A. & Gendron, F. Magnetic properties of lithium intercalation compounds. Ionics 12, 21-32 (2006).
51 Wu, J. et al. Dissociate lattice oxygen redox reactions from capacity and voltage drops of battery electrodes. Sci. Adv. 6, eaaw3871 (2020).
52 Findlay, S. D. et al. Dynamics of annular bright field imaging in scanning transmission electron microscopy. Ultramicroscopy 110, 903-923 (2010).
53 Wang, R. et al. Atomic Structure of Li2MnO3 after Partial Delithiation and Re-Lithiation. Adv. Energy Mater. 3, 1358-1367 (2013).
54 Liberti, E. et al. Quantifying oxygen distortions in lithium-rich transition-metal-oxide cathodes using ABF STEM. Ultramicroscopy 210, 112914 (2020).
55 Cramer, C. J., Tolman, W. B., Theopold, K. H. & Rheingold, A. L. Variable character of O—O and M—O bonding in side-on (η2) 1:1 metal complexes of O2. Proc. Natl. Acad. Sci. U.S.A. 100, 3635 (2003).
56 Li, X. et al. Direct Visualization of the Reversible O2−/O− Redox Process in Li-Rich Cathode Materials. Adv. Mater. 30, 1705197 (2018).
57 Wutthiprom, J., Phattharasupakun, N. & Sawangphruk, M. Turning Carbon Black to Hollow Carbon Nanospheres for Enhancing Charge Storage Capacities of LiMn2O4, LiCoO2, LiNiMnCoO2, and LiFePO4 Lithium-Ion Batteries. ACS Omega 2, 3730-3738 (2017).
58 Das, T. K., Couture, M., Ouellet, Y., Guertin, M. & Rousseau, D. L. Simultaneous observation of the O—O and Fe—O2 stretching modes in oxyhemoglobins. Proc. Natl. Acad. Sci. U.S.A. 98, 479 (2001).
59 Krebs, C., Edmondson, D. E. & Huynh, B. H. Demonstration of Peroxodiferric Intermediate in M-Ferritin Ferroxidase Reaction Using Rapid Freeze-Quench Mössbauer, Resonance Raman, and XAS Spectroscopies. Methods Enzymol. 354, 436-454 (2002).
60 Malavasi, L., Galinetto, P., Mozzati, M. C., Azzoni, C. B. & Flor, G. Raman spectroscopy of AMn2O4 (A = Mn, Mg and Zn) spinels. Phys. Chem. Chem. Phys. 4, 3876-3880 (2002).
61 Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15-50 (1996).
62 Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 77, 3865-3868 (1996).
63 Jain, A. et al. A high-throughput infrastructure for density functional theory calculations. Comput. Mater. Sci. 50, 2295-2310 (2011).