1 Scoville, W. B. & Milner, B. Loss of recent memory after bilateral hippocampal lesions. J Neurol Neurosurg Psychiatry 20, 11-21, doi:10.1136/jnnp.20.1.11 (1957).
2 Morris, R. G., Garrud, P., Rawlins, J. N. & O'Keefe, J. Place navigation impaired in rats with hippocampal lesions. Nature 297, 681-683, doi:10.1038/297681a0 (1982).
3 Lisman, J. et al. Viewpoints: how the hippocampus contributes to memory, navigation and cognition. Nat Neurosci 20, 1434-1447, doi:10.1038/nn.4661 (2017).
4 Kim, J. J. & Diamond, D. M. The stressed hippocampus, synaptic plasticity and lost memories. Nat Rev Neurosci 3, 453-462, doi:10.1038/nrn849 (2002).
5 Moreno-Jiménez, E. P. et al. Adult hippocampal neurogenesis is abundant in neurologically healthy subjects and drops sharply in patients with Alzheimer's disease. Nat Med 25, 554-560, doi:10.1038/s41591-019-0375-9 (2019).
6 Li, J. Q. et al. Risk factors for predicting progression from mild cognitive impairment to Alzheimer's disease: a systematic review and meta-analysis of cohort studies. J Neurol Neurosurg Psychiatry 87, 476-484, doi:10.1136/jnnp-2014-310095 (2016).
7 Calabresi, P., Castrioto, A., Di Filippo, M. & Picconi, B. New experimental and clinical links between the hippocampus and the dopaminergic system in Parkinson's disease. Lancet Neurol 12, 811-821, doi:10.1016/s1474-4422(13)70118-2 (2013).
8 Mattai, A. et al. Hippocampal volume development in healthy siblings of childhood-onset schizophrenia patients. Am J Psychiatry 168, 427-435, doi:10.1176/appi.ajp.2010.10050681 (2011).
9 Treadway, M. T. et al. Illness progression, recent stress, and morphometry of hippocampal subfields and medial prefrontal cortex in major depression. Biol Psychiatry 77, 285-294, doi:10.1016/j.biopsych.2014.06.018 (2015).
10 Gonçalves, J. T., Schafer, S. T. & Gage, F. H. Adult Neurogenesis in the Hippocampus: From Stem Cells to Behavior. Cell 167, 897-914, doi:10.1016/j.cell.2016.10.021 (2016).
11 Kühn, S. et al. Plasticity of hippocampal subfield volume cornu ammonis 2+3 over the course of withdrawal in patients with alcohol dependence. JAMA Psychiatry 71, 806-811, doi:10.1001/jamapsychiatry.2014.352 (2014).
12 Pitman, R. K. et al. Biological studies of post-traumatic stress disorder. Nat Rev Neurosci 13, 769-787, doi:10.1038/nrn3339 (2012).
13 Fanselow, M. S. & Dong, H. W. Are the dorsal and ventral hippocampus functionally distinct structures? Neuron 65, 7-19, doi:10.1016/j.neuron.2009.11.031 (2010).
14 Iglesias, J. E. et al. A computational atlas of the hippocampal formation using ex vivo, ultra-high resolution MRI: Application to adaptive segmentation of in vivo MRI. Neuroimage 115, 117-137, doi:10.1016/j.neuroimage.2015.04.042 (2015).
15 Ho, N. F. et al. Progression from selective to general involvement of hippocampal subfields in schizophrenia. Mol Psychiatry 22, 142-152, doi:10.1038/mp.2016.4 (2017).
16 Small, S. A., Schobel, S. A., Buxton, R. B., Witter, M. P. & Barnes, C. A. A pathophysiological framework of hippocampal dysfunction in ageing and disease. Nat Rev Neurosci 12, 585-601, doi:10.1038/nrn3085 (2011).
17 Hibar, D. P. et al. Common genetic variants influence human subcortical brain structures. Nature 520, 224-229, doi:10.1038/nature14101 (2015).
18 Bis, J. C. et al. Common variants at 12q14 and 12q24 are associated with hippocampal volume. Nat Genet 44, 545-551, doi:10.1038/ng.2237 (2012).
19 Stein, J. L. et al. Identification of common variants associated with human hippocampal and intracranial volumes. Nat Genet 44, 552-561, doi:10.1038/ng.2250 (2012).
20 Hibar, D. P. et al. Novel genetic loci associated with hippocampal volume. Nat Commun 8, 13624, doi:10.1038/ncomms13624 (2017).
21 Elliott, L. T. et al. Genome-wide association studies of brain imaging phenotypes in UK Biobank. Nature 562, 210-216, doi:10.1038/s41586-018-0571-7 (2018).
22 Zhao, B. et al. Genome-wide association analysis of 19,629 individuals identifies variants influencing regional brain volumes and refines their genetic co-architecture with cognitive and mental health traits. Nat Genet 51, 1637-1644, doi:10.1038/s41588-019-0516-6 (2019).
23 Smith, S. M. et al. An expanded set of genome-wide association studies of brain imaging phenotypes in UK Biobank. Nature Neuroscience 24, 737-745, doi:10.1038/s41593-021-00826-4 (2021).
24 van der Meer, D. et al. Brain scans from 21,297 individuals reveal the genetic architecture of hippocampal subfield volumes. Mol Psychiatry 25, 3053-3065, doi:10.1038/s41380-018-0262-7 (2020).
25 Zahodne, L. B. et al. Structural MRI Predictors of Late-Life Cognition Differ Across African Americans, Hispanics, and Whites. Curr Alzheimer Res 12, 632-639, doi:10.2174/1567205012666150530203214 (2015).
26 Li, M. et al. Allelic differences between Europeans and Chinese for CREB1 SNPs and their implications in gene expression regulation, hippocampal structure and function, and bipolar disorder susceptibility. Mol Psychiatry 19, 452-461, doi:10.1038/mp.2013.37 (2014).
27 Li, M. et al. Failure of replicating the association between hippocampal volume and 3 single-nucleotide polymorphisms identified from the European genome-wide association study in Asian populations. Neurobiol Aging 35, 2883.e2881-2883.e2882, doi:10.1016/j.neurobiolaging.2014.07.015 (2014).
28 Peterson, R. E. et al. Genome-wide Association Studies in Ancestrally Diverse Populations: Opportunities, Methods, Pitfalls, and Recommendations. Cell 179, 589-603, doi:10.1016/j.cell.2019.08.051 (2019).
29 Li, Y. R. & Keating, B. J. Trans-ethnic genome-wide association studies: advantages and challenges of mapping in diverse populations. Genome Med 6, 91, doi:10.1186/s13073-014-0091-5 (2014).
30 Chen, M. H. et al. Trans-ethnic and Ancestry-Specific Blood-Cell Genetics in 746,667 Individuals from 5 Global Populations. Cell 182, 1198-1213.e1114, doi:10.1016/j.cell.2020.06.045 (2020).
31 Schaid, D. J., Chen, W. & Larson, N. B. From genome-wide associations to candidate causal variants by statistical fine-mapping. Nat Rev Genet 19, 491-504, doi:10.1038/s41576-018-0016-z (2018).
32 Chen, J. et al. The trans-ancestral genomic architecture of glycemic traits. Nat Genet 53, 840-860, doi:10.1038/s41588-021-00852-9 (2021).
33 Wojcik, G. L. et al. Genetic analyses of diverse populations improves discovery for complex traits. Nature 570, 514-518, doi:10.1038/s41586-019-1310-4 (2019).
34 Xu, Q. et al. CHIMGEN: a Chinese imaging genetics cohort to enhance cross-ethnic and cross-geographic brain research. Mol Psychiatry 25, 517-529, doi:10.1038/s41380-019-0627-6 (2020).
35 Han, B. & Eskin, E. Random-effects model aimed at discovering associations in meta-analysis of genome-wide association studies. Am J Hum Genet 88, 586-598, doi:10.1016/j.ajhg.2011.04.014 (2011).
36 Auton, A. et al. A global reference for human genetic variation. Nature 526, 68-74, doi:10.1038/nature15393 (2015).
37 Kichaev, G. & Pasaniuc, B. Leveraging Functional-Annotation Data in Trans-ethnic Fine-Mapping Studies. Am J Hum Genet 97, 260-271, doi:10.1016/j.ajhg.2015.06.007 (2015).
38 Maller, J. B. et al. Bayesian refinement of association signals for 14 loci in 3 common diseases. Nat Genet 44, 1294-1301, doi:10.1038/ng.2435 (2012).
39 Duncan, L. et al. Analysis of polygenic risk score usage and performance in diverse human populations. Nat Commun 10, 3328, doi:10.1038/s41467-019-11112-0 (2019).
40 Martin, A. R. et al. Clinical use of current polygenic risk scores may exacerbate health disparities. Nature Genetics 51, 584-591, doi:10.1038/s41588-019-0379-x (2019).
41 Koyama, S. et al. Population-specific and trans-ancestry genome-wide analyses identify distinct and shared genetic risk loci for coronary artery disease. Nat Genet 52, 1169-1177, doi:10.1038/s41588-020-0705-3 (2020).
42 Watanabe, K., Taskesen, E., van Bochoven, A. & Posthuma, D. Functional mapping and annotation of genetic associations with FUMA. Nat Commun 8, 1826, doi:10.1038/s41467-017-01261-5 (2017).
43 Wang, K., Li, M. & Hakonarson, H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res 38, e164, doi:10.1093/nar/gkq603 (2010).
44 Kircher, M. et al. A general framework for estimating the relative pathogenicity of human genetic variants. Nat Genet 46, 310-315, doi:10.1038/ng.2892 (2014).
45 Battle, A., Brown, C. D., Engelhardt, B. E. & Montgomery, S. B. Genetic effects on gene expression across human tissues. Nature 550, 204-213, doi:10.1038/nature24277 (2017).
46 Chen, L., Song, D., Chen, B., Yang, X. & Cheng, O. Activation of liver X receptor promotes hippocampal neurogenesis and improves long-term cognitive function recovery in acute cerebral ischemia-reperfusion mice. J Neurochem 154, 205-217, doi:10.1111/jnc.14890 (2020).
47 Zhao, L. et al. The roles of liver X receptor α in inflammation and inflammation-associated diseases. J Cell Physiol 236, 4807-4828, doi:10.1002/jcp.30204 (2021).
48 Del Villar, K. & Miller, C. A. Down-regulation of DENN/MADD, a TNF receptor binding protein, correlates with neuronal cell death in Alzheimer's disease brain and hippocampal neurons. Proc Natl Acad Sci U S A 101, 4210-4215, doi:10.1073/pnas.0307349101 (2004).
49 Liu, Y. et al. APOE genotype and neuroimaging markers of Alzheimer's disease: systematic review and meta-analysis. J Neurol Neurosurg Psychiatry 86, 127-134, doi:10.1136/jnnp-2014-307719 (2015).
50 Belloy, M. E., Napolioni, V. & Greicius, M. D. A Quarter Century of APOE and Alzheimer's Disease: Progress to Date and the Path Forward. Neuron 101, 820-838, doi:10.1016/j.neuron.2019.01.056 (2019).
51 Litterman, N. et al. An OBSL1-Cul7Fbxw8 ubiquitin ligase signaling mechanism regulates Golgi morphology and dendrite patterning. PLoS Biol 9, e1001060, doi:10.1371/journal.pbio.1001060 (2011).
52 Diao, J. et al. ATG14 promotes membrane tethering and fusion of autophagosomes to endolysosomes. Nature 520, 563-566, doi:10.1038/nature14147 (2015).
53 Lee, K. M., Hwang, S. K. & Lee, J. A. Neuronal autophagy and neurodevelopmental disorders. Exp Neurobiol 22, 133-142, doi:10.5607/en.2013.22.3.133 (2013).
54 Artuso, R. et al. Investigation of modifier genes within copy number variations in Rett syndrome. J Hum Genet 56, 508-515, doi:10.1038/jhg.2011.50 (2011).
55 Sparse whole-genome sequencing identifies two loci for major depressive disorder. Nature 523, 588-591, doi:10.1038/nature14659 (2015).
56 Shimazu, T., Barjau, J., Sohtome, Y., Sodeoka, M. & Shinkai, Y. Selenium-based S-adenosylmethionine analog reveals the mammalian seven-beta-strand methyltransferase METTL10 to be an EF1A1 lysine methyltransferase. PLoS One 9, e105394, doi:10.1371/journal.pone.0105394 (2014).
57 Liao, Y., Wang, J., Jaehnig, E. J., Shi, Z. & Zhang, B. WebGestalt 2019: gene set analysis toolkit with revamped UIs and APIs. Nucleic Acids Res 47, W199-w205, doi:10.1093/nar/gkz401 (2019).
58 Buniello, A. et al. The NHGRI-EBI GWAS Catalog of published genome-wide association studies, targeted arrays and summary statistics 2019. Nucleic Acids Res 47, D1005-d1012, doi:10.1093/nar/gky1120 (2019).
59 Jacobs, S. et al. Mice with targeted Slc4a10 gene disruption have small brain ventricles and show reduced neuronal excitability. Proc Natl Acad Sci U S A 105, 311-316, doi:10.1073/pnas.0705487105 (2008).
60 Sinning, A., Liebmann, L. & Hübner, C. A. Disruption of Slc4a10 augments neuronal excitability and modulates synaptic short-term plasticity. Front Cell Neurosci 9, 223, doi:10.3389/fncel.2015.00223 (2015).
61 Sun, C. et al. Nonenzymatic function of DPP4 in diabetes-associated mitochondrial dysfunction and cognitive impairment. Alzheimers Dement, doi:10.1002/alz.12437 (2021).
62 Takamatsu, G. et al. Tescalcin is a potential target of class I histone deacetylase inhibitors in neurons. Biochem Biophys Res Commun 482, 1327-1333, doi:10.1016/j.bbrc.2016.12.036 (2017).
63 Antonelli, F., Casciati, A. & Pazzaglia, S. Sonic hedgehog signaling controls dentate gyrus patterning and adult neurogenesis in the hippocampus. Neural Regen Res 14, 59-61, doi:10.4103/1673-5374.243703 (2019).
64 Haukvik, U. K. et al. In vivo hippocampal subfield volumes in schizophrenia and bipolar disorder. Biol Psychiatry 77, 581-588, doi:10.1016/j.biopsych.2014.06.020 (2015).
65 Hussaini, S. M. et al. Wnt signaling in neuropsychiatric disorders: ties with adult hippocampal neurogenesis and behavior. Neurosci Biobehav Rev 47, 369-383, doi:10.1016/j.neubiorev.2014.09.005 (2014).