[1] Dong XX, Wang Y, Qin ZH (2009) Molecular mechanisms of excitotoxicity and their relevance to pathogenesis of neurodegenerative diseases. Acta Pharmacol Sin 30:379-387. https://doi.org/10.1038/aps.2009.24
[2] Lai TW, Zhang S, Wang YT (2014) Excitotoxicity and stroke: identifying novel targets for neuroprotection. Prog Neurobiol 115:157-188. https://doi.org/10.1016/j.pneurobio.2013.11.006
[3] Mehta A, Prabhakar M, Kumar P, Deshmukh R, Sharma PL (2013) Excitotoxicity: bridge to various triggers in neurodegenerative disorders. Eur J Pharmacol 698:6-18. https://doi.org/10.1016/j.ejphar.2012.10.032
[4] Kulbe JR, Levy JMM, Coultrap SJ, Thorburn A, Bayer KU (2014) Excitotoxic glutamate insults block autophagy flux in hippocampal neurons. Brain Res 1542:12-19. https://doi.org/10.1016/j.brainres.2013.10.032
[5] Pérez-Carrión MD, Pérez-Martínez FC, Merino S, Sánchez-Verdú P, Martínez-Hernández J, Luján R, Ceña V (2012) Dendrimer-mediated siRNA delivery knocks down Beclin 1 and potentiates NMDA-mediated toxicity in rat cortical neurons. J Neurochem 120:259-268. https://doi.org/10.1111/j.1471-4159.2011.07556.x
[6] Yin WY, Ye Q, Huang HJ, Xia NG, Chen YY, Zhang Y, Qu QM (2016) Salidroside protects cortical neurons against glutamate-induced cytotoxicity by inhibiting autophagy. Mol Cell Biochem 419:53-64. https://doi.org/10.1007/s11010-016-2749-3
[7] Lippai M, Lőw P (2014) The role of selective adaptor p62 and ubiquitin-like proteins in autophagy. Biomed Res Int 2014:832704. https://doi.org/10.1155/2014/832704
[8] Zachari M, Ganley IG (2017) The mammalian ULK1 complex and autophagy initiation. Essays Biochem 61:585-596. https://doi.org/10.1042/EBC20170021
[9] Kim J, Kundu M, Viollet B, Guan KL (2011) AMPK and mTOR regulates the autophagy through direct phosphorylation of Ulk1. Nat Cell Biol 13:132-141. https://doi.org/10.1038/ncb2152
[10] Hurley JH, Young LN (2017) Mechanisms of autophagy initiation. Annu Rev Biochem 86:225-244. https://doi.org/10.1146/annurev-biochem-061516-044820
[11] Peker N, Gozuacik D (2020) Autophagy as a Cellular Stress Response Mechanisms in the Nervous System. J Mol Biol 432:2560-2588. htps://doi.org/10.1016/j.jmb.2020.01.017
[12] Braidy N, Brew BJ, Inestrosa NC, Chung R, Sachdev P, Guillemin G.J (2014) Changes in Chathepsin D and Beclin-1 mRNA and protein expression by the excitoxin quinolinic acid in human astrocytes and neurons. Metab Brain Dis 29:873-883. https://doi.org/10.1007/s11011-014-9557-9
[13] Hernández DE, Salvadores NA, Moya-Alvarado G, Catalán RJ, Bronfman FC, Court FA (2018) Axonal degeneration induced by glutamate excitotoxicity es mediated by necroptosis. J Cell Sci 131:pii:jcs214684. https://doi.org/10.1242/jcs.214684
[14] Li Y, Yang X, Ma C, Qiao J, Zhang C (2008) Necroptosis contributes to the NMDA-induced excitotoxicity in rat’s cultured cortical neurons. Neurosci Lett 447:120-123. https://doi.org/10.1016/j.neulet.2008.08.037
[15] Yuan J, Amin P, Ofengeim D (2019) Necroptosis and RIPK1-mediated neuroinflammation in CNS diseases. Nat Rev Neurosci 20:19-22. https://doi.org/10.1038/s41583-018-0093-1
[16] Frank D, Vaux DL, Murphy JM, Vince JE, Lindqvist LM (2019) Activated MLKL attenuates autophagy following its translocation to intracellular membranes. J Cell Sci 132:jcs220996. https://doi.org/10.1242/jcs.220996
[17] Moroni F (1999) Tryptophan metabolism and brain function: focus on kynurenine and other indole metabolites. Eur J Pharmacol 375:87-100. https://doi.org/10.1016/S0014-2999(99)00196-X
[18] Espey MG, Chernyshev ON, Reinhard JFJr, Namboodiri MA, Colton CA (1997) Activated human microglia produce the excitotoxin quinolinic acid. Neuroreport 8:431-434. https://doi.org/10.1097/00001756-199701200-00011
[19] Schwarcz R, Foster AC, French ED, Whetsell WOJr, Köhler C (1984) Excitotoxic models for neurodegenerative disorders. Life Sci 35:19-32. https://doi.org/10.1016/0024-3205(84)90148-6
[20] Tavares RG, Tasca CI, Santos CE, Wajner M, Souza DO, Dutra-Filho CS (2000) Quinolinic acid inhibits glutamate uptake into synaptic vesicles from rat brain. Neuroreport 11:249-253. https://doi.org/10.1097/00001756-200002070-00005
[21] Guillemin GJ (2012) Quinolinic acid, the inescapable neurotoxin. FEBS J 279:1356-1365. https://doi.org/10.1111/j.1742-4658.2012.08485.x
[22] Beal MF, Kowall NW, Swartz KJ, Ferrante RJ, Martin JB (1988) Systemic approaches to modifying quinolinic acid striatal lesions in rats. J Neurosci 8:3901-3908. https://doi.org/10.1523/JNEUROSCI.08-10-03901
[23] Ganzella M, Jardim FM, Boeck CR, Vendite D (2006) Time course of oxidative events in the hippocampus following intracerebroventricular infusion of quinolinic acid in mice. Neurosci Res 55:397-402. https://doi.org/10.1016/j.neures.2006.05.003
[24] Wang Y, Dong XX, Cao Y, Liang ZQ, Han R, Wu JC, Gu ZL, Qin ZH (2009) p53 induction contributes to excitotoxic neuronal death in rat striatum through apoptotic and autophagic mechanisms. Eur J Neurosci 30:2258-2270. https://doi.org/10.1111/j.1460-9568.2009.07025.x
[25] Hossain MI, Marcus JM, Lee JH, Garcia PL, Singh V, Shacka, JJ, Zhang, J., Gropen TI, Falany CN, Andrabi SA (2021) Restoration of CTSD (cathepsin D) and lysosomal function in stroke is neuroprotective. Autophagy 17:1330-1348. https://doi.org/10.1080/15548627.2020.1761219
[26] Portera-Cailliau C, Price DL, Martin LJ (1997) Non-NMDA and NMDA receptor-mediated excitotoxic neuronal deaths in adult brain are morphologically distinct: further evidence for an apoptosis-necrosis continuum. J Comp Neurol 378:88-104. https://doi.org/10.1002/(SICI)1096-9861(19970203)378:1<88::AID-CNE5>3.0.CO;2-G
[27] Feng Q, Ma Y, Mu S, Wu J, Chen S, Ouyang L, Lei W (2014) Specific reactions of different striatal neuron types in morphology induced by quinolinic acid in rats. PLoS One 9:e91512. https://doi.org/10.1371/journal.pone.0091512
[28] Paxinos G, Watson C (1998) The rat brain in stereotaxic coordinates. Academic Press Inc San Diego: Press, USA.
[29] Lowry OH, Rosebrough NJ, Farr AL, Randall LJ (1951) Protein measurement with the Folin-phenol reagent. J Biol Chem 193:265-275. https://doi.org/10.1016/S0021-9258(19)52451-6
[30] Nguyen HQ, Zada S, Lai TH, Pham, TM, Hwang JS, Ahmed M, Kim DR (2019) Calpain-induced Beclin1 cleavage stimulates senescence-associated cell death in HT22 hippocampal cells under the oxidative stress conditions. Neurosci Lett 701:106-111. https://doi.org/10.1016/.neulet.2019.02.036
[31] Schwarcz R, Guidetti P, Sathyasaikumar KV, Muchowski PJ (2010) Of mice, rats and men: Revisiting the quinolinic acid hypothesis of Huntington’s disease. Prog Neurobiol 90:230-245. http://doi.org/10.1016/j.pneurobio.2009.04.005
[32] Pierozan P, Fernandes DG, Dutra MF, Pandolfo P, Ferreira F, de Lima BO, Porciúncula L, Wajner M, Pessoa-Pureur R (2014) Biochemical, histopathological and behavioral alterations caused by intrastriatal administration of quinolic acid to young rats. FEBS J 281, 2061-2073. https://doi.org/10.1111/febs.12762
[33] Santamaría A, Jiménez-Capdeville ME, Camacho A, Rodríguez-Martínez E, Flores A, Galván-Arzate S (2001) In vivo hydroxyl radical formation after quinolinic acid infusion into rat corpus striatum. Neuroreport 12:2693-2696. https://doi.org/10.1097/00001756-200108280-00020
[34] Maldonado PD, Molina-Jijón E, Villeda-Hernández J, Galván-Arzate S, Santamaría A, Pedraza-Chaverrí J (2010) NAD(P)H oxidase contributes to neurotoxicity in an excitotoxic/prooxidant model of Huntington's disease in rats: protective role of apocynin. J Neurosci Res 88:620-629. https://doi.org/10.1002/jnr.22240
[35] Santamaría A, Rios C (1993) MK-801, an N-methyl-D-aspartate receptor antagonist, blocks quinolinic acid-induced lipid peroxidation in rat corpus striatum. Neurosci Lett 159:51-54. https://doi.org/10.1016/0304-3940(93)90796-n
[36] Cruz-Aguado R, Francis-Turner L, Díaz CM, Antúnez I (2000) Quinolinic acid lesion induces changes in rat striatal glutathione metabolism. Neurochem Int 37:53-60. https://doi.org/10.1016/s0197-0186(99)00165-5
[37] Colín-González AL, Orozco-Ibarra M, Chánez-Cárdenas ME, Rangel-López E, Santamaría A, Pedraza-Chaverri, J, Barrera-Oviedo D, Maldonado PD (2013) Heme oxigenase-1 (HO-1) upregulation delays morphological and oxidative stress damage induced in an excitotoxic/pro-oxidant model in the rat striatum. Neuroscience 231:91-101. https://doi.org/10.1016/j.neuroscience.2012.11.031
[38] Ferreiro E, Baldeiras I, Ferreira IL, Costa, RO, Rego AC, Pereira CF, Oliveira CR (2012) Mitochondrial-and endoplasmic reticulum-associated oxidative stress in Alzheimer’s disease: from pathogenesis to biomarkers. Int J Cell Biol 2012:735206. https://doi.org/10.1155/2012/735206
[39] Zündorf G, Reiser G (2011) Calcium dysregulation and homeostasis of neural calcium in the molecular mechanisms of neurodegenerative diseases provide multiple targets for neuroprotection. Antioxid Redox Signal 17:1275-1288. https://doi.org/10.1089/ars.2010.3359
[40] Santana-Martínez RA, León-Contreras JC, Barrera-Oviedo D, Pedraza-Chaverri J, Hernández-Pando R, Maldonado PD (2018) Sustained activation of JNK induced by quinolinic acid alters the BDNF/TrkB axis in the rat striatum. Neuroscience 383:22-32. https://doi.org/10.1016/j.neuroscience.2018.04.034
[41] Mishra J, Kumar A (2014) Improvement of mitochondrial function by paliperidone attenuates quinolinic acid-induced behavioural and neurochemical alterations in rats: implications in Huntington's disease. Neurotox Res 26:363-381. https://doi.org/10.1007/s12640-014-9469-9
[42] Luis-García ER, Limón-Pacheco JH, Serrano-García N, Hernández-Pérez AD, Pedraza-Chaverri J, Orozco-Ibarra M (2017) Sulforaphane prevents quinolinic acid-induced mitochondrial dysfunction in rat striatum. J Biochem Mol Toxicol 31:e21837. https://doi.org/10.1002/jbt.21837
[43] Fernandes AM, Landeira-Fernandez AM, Souza-Santos P, Carvalho-Alves PC, Castilho RF (2008) Quinolinate-induced rat striatal excitotoxicity impairs endoplasmic reticulum Ca2+-ATPase function. Neurochem Res 33:1749-1758. https://doi.org/10.1007/s11064-008-9619-7
[44] Beskid M, Zamecka E, Dybkowska-Klos H, Jachimowicz J, Kocjasz W (1995) Effect of quinolinic acid administration on rat liver: ultrastructural investigation. Exp Toxicol Pathol 47:375-379. https://doi.org/10.1016/s0940-2993(11)80352-0
[45] Lim CK, Smythe GA, Stocker R, Brew BJ, Guillemin GJ (2007) Characterization of the kynurenine pathway in human oligodendrocytes. Int Congr Ser 1304:213-217. https://doi.org/10.1016/j.ics.2007.07.011
[46] Cammer W (2001) Oligodendrocyte killing by quinolinic acid in vitro. Brain Res 896:157-160. https://doi.org/10.1016/s0006-8994(01)02017-0
[47] Micu I, Jiang Q, Coderre E, Ridsdale A, Zhang L, Woulfe J, Yin X, Trapp BD, McRory JE, Rehak R, Zamponi GW, Wang W, Stys PK (2006) NMDA receptors mediate calcium accumulation in myelin during chemical ischaemia. Nature 439:988-992. https://doi.org/10.1038/nature04474
[48] Chung Y, Lee J, Jung S, Lee Y, Cho JW, Oh YJ (2018) Dysregulated autophagy contributes to caspase-dependent neuronal apoptosis. Cell Detah Dis 9:1189. https://doi.org/10.1038/s41419-018-1229-y
[49] Montiel T, Montes-Ortega LA, Flores-Yáñez S, Massieu L (2020) Treatment with the keto body D-beta-hydroxybutyrate attenuates autophagy activation by NMDA and reduces excitotoxic neuronal damage in the rat striatum in vivo. Curr Pharm Des 26:1377-1387. https://doi.org/10.2174/1381612826666200115103646
[50] Bieri G, Lucin KM, O’Brien CE, Zhang H, Villeda SA, Wyss-Cora, T (2018) Proteolytic cleavage of Beclin 1 exacerbates neurodegeneration. Mol Neurodegener 13:68. https://doi.org/10.1186/s13024-018-0302-4
[51] Guemez-Gamboa A, Estrada-Sánchez AM, Montiel T, Páramo B, Massieu L, Morán J (2011) Activation of NOX2 by the stimulation of inotropic and metabotropic glutamate receptors contributes to glutamate neurotoxicity in vivo through the production of reactive oxygen species and calpain activation. J Neuropathol Exp Neurol 70:1020-1035. https://doi.org/10.1097/NEN.0b013e3182358e4e
[52] Chen JH, Kuo HC, Lee KF, Tsai TH (2015) Global proteomic analysis of brain tissue in transient ischemia brain damage in rats. Int J Mol Sci 16:11873-11891. https://doi.org/10.3390/ijms160611873.
[53] Koike M, Nakanishi H, Saftig P, Ezaki J, Isahara K, Ohsawa Y, Schulz-Schaeffer W, Watanabe T, Waguri S, Kametaka S, Shibata M, Yamamoto K, Kominami E, Peters C, von Figura K, Uchiyama Y (2000) Cathepsin D deficiency induces lysosomal storage with ceroid lipofuscin in mouse CNS neurons. J Neurosci 20:6898-6906. https://doi.org/10.1523/JNEUROSCI.20-18-06898.2000.
[54] Koike M, Shibata M, Ohsawa Y, Nakanishi H, Koga T, Kametaka S, Waguri S, Momoi T, Kominami E, Peters C, von Figura K, Saftig P, Uchiyama Y (2003) Involvement of two different cell death pathways in retinal atrophy of cathepsin D-deficient mice. Mol Cell Neurosci 22:146-161. https://doi.org/10.1016/s1044-7431(03)00035-6
[55] Naito MG, Xu D, Amin P, Lee J, Wang H, Li W, Kelliher M, Pasparakis M, Yuan J (2020) Sequential activation of necroptosis and apoptosis cooperates to mediate vascular and neural pathology in stroke. Proc Natl Acad Sci U S A 117:4959-4970. https://doi.org/10.1073/pnas.1916427117
[56] Deng XX, Li SS, Sun FY (2019) Necrostatin-1 prevents necroptosis in brain after ischemic stroke via inhibition of RIPK1-mediated RIPK3/MLKL signaling. Aging Dis 10:807-817. https://doi.org/10.14336/AD.2018.0728
[57] Yuan S, Yu Z, Zhang Z, Zhang J, Zhang P, Li X, Li H, Shen H, Chen G (2019) RIP3 participates in early brain injury after experimental subarachnoid hemorrhage in rats by inducing necroptosis. Neurobiol Dis 129:144-158. https://doi.org/10.1016/j.nbd.2019.05.004
[58] Chen T, Pan H, Li J, Xu H, Jin H, Qian C, Yan F, Chen J, Wang C, Chen J, Wang L, Chen G (2018) Inhibition of RIPK3 attenuates early brain injury following subarachnoid hemorrhage: possibly through alleviation necroptosis. Biomed Pharmacother 107:563-570. https://doi.org/10.1016/j.biopha.2018.08.056