1 Masters, P. S. & Perlman, S. in Fields Virology Vol. 1 (eds D.M. Knipe & P.M Howley) Ch. 28, 825-858 (2013).
2 Viruses, I. C. o. T. o. Virus Taxonomy: 2011 Release. http://ictvonline.org/virusTaxonomy.asp?version=2011. (2011).
3 Drosten, C. et al. Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N Engl J Med 348, 1967-1976, doi:10.1056/NEJMoa030747
NEJMoa030747 [pii] (2003).
4 Ksiazek, T. G. et al. A novel coronavirus associated with severe acute respiratory syndrome. N Engl J Med 348, 1953-1966, doi:10.1056/NEJMoa030781
NEJMoa030781 [pii] (2003).
5 Guan, Y. et al. Isolation and characterization of viruses related to the SARS coronavirus from animals in southern China. Science 302, 276-278, doi:10.1126/science.1087139
1087139 [pii] (2003).
6 Li, W. et al. Bats are natural reservoirs of SARS-like coronaviruses. Science 310, 676-679, doi:1118391 [pii]
10.1126/science.1118391 (2005).
7 Kamps, B. S. & Hoffmann, C. SARS Reference, http://www.sarsreference.com/sarsref/preface.htm. (2003).
8 Zaki, A. M., van Boheemen, S., Bestebroer, T. M., Osterhaus, A. D. & Fouchier, R. A. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N Engl J Med 367, 1814-1820, doi:10.1056/NEJMoa1211721 (2012).
9 WHO. Middle East respiratory syndrome coronavirus (MERS-CoV) - update, World Health Organization Global Alert and Response, Nov, 2019 https://www.who.int/emergencies/mers-cov/en/. (2019).
10 Huang, C. et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet, doi:10.1016/S0140-6736(20)30183-5 (2020).
11 Ren, L. L. et al. Identification of a novel coronavirus causing severe pneumonia in human: a descriptive study. Chin Med J (Engl), doi:10.1097/CM9.0000000000000722 (2020).
12 Zhu, N. et al. A Novel Coronavirus from Patients with Pneumonia in China, 2019. N Engl J Med, doi:10.1056/NEJMoa2001017 (2020).
13 Zhou, P. et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, doi:10.1038/s41586-020-2012-7 (2020).
14 Kubo, H., Yamada, Y. K. & Taguchi, F. Localization of neutralizing epitopes and the receptor-binding site within the amino-terminal 330 amino acids of the murine coronavirus spike protein. J Virol 68, 5403-5410 (1994).
15 Li, F., Li, W., Farzan, M. & Harrison, S. C. Structure of SARS coronavirus spike receptor-binding domain complexed with receptor. Science 309, 1864-1868, doi:309/5742/1864 [pii]
10.1126/science.1116480 (2005).
16 Lu, G. et al. Molecular basis of binding between novel human coronavirus MERS-CoV and its receptor CD26. Nature 500, 227-231, doi:nature12328 [pii]
10.1038/nature12328 (2013).
17 Wang, N. et al. Structure of MERS-CoV spike receptor-binding domain complexed with human receptor DPP4. Cell Res 23, 986-993, doi:cr201392 [pii]
10.1038/cr.2013.92 (2013).
18 Ou, X. et al. Crystal structure of the receptor binding domain of the spike glycoprotein of human betacoronavirus HKU1. Nature communications 8, 15216, doi:10.1038/ncomms15216 (2017).
19 Qian, Z. et al. Identification of the Receptor-Binding Domain of the Spike Glycoprotein of Human Betacoronavirus HKU1. J Virol 89, 8816-8827, doi:10.1128/JVI.03737-14 (2015).
20 Williams, R. K., Jiang, G. S. & Holmes, K. V. Receptor for mouse hepatitis virus is a member of the carcinoembryonic antigen family of glycoproteins. Proc Natl Acad Sci U S A 88, 5533-5536 (1991).
21 Li, W. et al. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature 426, 450-454, doi:10.1038/nature02145
nature02145 [pii] (2003).
22 Raj, V. S. et al. Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC. Nature 495, 251-254, doi:nature12005 [pii]
10.1038/nature12005 (2013).
23 Hu, D. et al. Genomic characterization and infectivity of a novel SARS-like coronavirus in Chinese bats. Emerg Microbes Infect 7, 154, doi:10.1038/s41426-018-0155-5 (2018).
24 Bertram, S. et al. TMPRSS2 activates the human coronavirus 229E for cathepsin-independent host cell entry and is expressed in viral target cells in the respiratory epithelium. J Virol 87, 6150-6160, doi:JVI.03372-12 [pii]
10.1128/JVI.03372-12 (2013).
25 Bertram, S. et al. Cleavage and activation of the severe acute respiratory syndrome coronavirus spike protein by human airway trypsin-like protease. J Virol 85, 13363-13372, doi:10.1128/JVI.05300-11 (2011).
26 Gierer, S. et al. The Spike Protein of the Emerging Betacoronavirus EMC Uses a Novel Coronavirus Receptor for Entry, Can Be Activated by TMPRSS2, and Is Targeted by Neutralizing Antibodies. J Virol 87, 5502-5511, doi:JVI.00128-13 [pii]
10.1128/JVI.00128-13 (2013).
27 Qian, Z., Dominguez, S. R. & Holmes, K. V. Role of the spike glycoprotein of human Middle East respiratory syndrome coronavirus (MERS-CoV) in virus entry and syncytia formation. PLoS One 8, e76469, doi:10.1371/journal.pone.0076469
PONE-D-13-26136 [pii] (2013).
28 Shirato, K., Kawase, M. & Matsuyama, S. Middle East respiratory syndrome coronavirus infection mediated by the transmembrane serine protease TMPRSS2. J Virol 87, 12552-12561, doi:JVI.01890-13 [pii]10.1128/JVI.01890-13 (2013).
29 Shirogane, Y. et al. Efficient multiplication of human metapneumovirus in Vero cells expressing the transmembrane serine protease TMPRSS2. J Virol 82, 8942-8946, doi:JVI.00676-08 [pii]10.1128/JVI.00676-08 (2008).
30 Millet, J. K. & Whittaker, G. R. Host cell entry of Middle East respiratory syndrome coronavirus after two-step, furin-mediated activation of the spike protein. Proc Natl Acad Sci U S A 111, 15214-15219, doi:10.1073/pnas.1407087111 (2014).
31 Park, J. E. et al. Proteolytic processing of Middle East respiratory syndrome coronavirus spikes expands virus tropism. Proc Natl Acad Sci U S A 113, 12262-12267, doi:10.1073/pnas.1608147113 (2016).
32 de Lartigue, J. et al. PIKfyve regulation of endosome-linked pathways. Traffic 10, 883-893, doi:10.1111/j.1600-0854.2009.00915.x (2009).
33 Rutherford, A. C. et al. The mammalian phosphatidylinositol 3-phosphate 5-kinase (PIKfyve) regulates endosome-to-TGN retrograde transport. J Cell Sci 119, 3944-3957, doi:10.1242/jcs.03153 (2006).
34 Nelson, E. A. et al. The phosphatidylinositol-3-phosphate 5-kinase inhibitor apilimod blocks filoviral entry and infection. PLoS Negl Trop Dis 11, e0005540, doi:10.1371/journal.pntd.0005540 (2017).
35 Li, P., Gu, M. & Xu, H. Lysosomal Ion Channels as Decoders of Cellular Signals. Trends Biochem Sci 44, 110-124, doi:10.1016/j.tibs.2018.10.006 (2019).
36 Sakurai, Y. et al. Ebola virus. Two-pore channels control Ebola virus host cell entry and are drug targets for disease treatment. Science 347, 995-998, doi:10.1126/science.1258758 (2015).
37 Diehl, W. E. et al. Ebola Virus Glycoprotein with Increased Infectivity Dominated the 2013-2016 Epidemic. Cell 167, 1088-1098 e1086, doi:10.1016/j.cell.2016.10.014 (2016).
38 Urbanowicz, R. A. et al. Human Adaptation of Ebola Virus during the West African Outbreak. Cell 167, 1079-1087 e1075, doi:10.1016/j.cell.2016.10.013 (2016).
39 Wang, M. K., Lim, S. Y., Lee, S. M. & Cunningham, J. M. Biochemical Basis for Increased Activity of Ebola Glycoprotein in the 2013-16 Epidemic. Cell host & microbe 21, 367-375, doi:10.1016/j.chom.2017.02.002 (2017).
40 Li, F. Receptor Recognition Mechanisms of Coronaviruses: a Decade of Structural Studies. J Virol 89, 1954-1964, doi:10.1128/JVI.02615-14 (2015).
41 Menachery, V. D. et al. SARS-like WIV1-CoV poised for human emergence. Proc Natl Acad Sci U S A 113, 3048-3053, doi:10.1073/pnas.1517719113 (2016).
42 Vorou, R. M., Papavassiliou, V. G. & Tsiodras, S. Emerging zoonoses and vector-borne infections affecting humans in Europe. Epidemiol Infect 135, 1231-1247, doi:10.1017/S0950268807008527 (2007).
43 WHO. Novel Coronavirus (2019-nCoV) situation reports. https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200210-sitrep-21-ncov.pdf?sfvrsn=947679ef_2. (2020).
44 Park, Y. J. et al. Structures of MERS-CoV spike glycoprotein in complex with sialoside attachment receptors. Nature structural & molecular biology 26, 1151-1157, doi:10.1038/s41594-019-0334-7 (2019).
45 Hulswit, R. J. G. et al. Human coronaviruses OC43 and HKU1 bind to 9-O-acetylated sialic acids via a conserved receptor-binding site in spike protein domain A. Proc Natl Acad Sci U S A 116, 2681-2690, doi:10.1073/pnas.1809667116 (2019).
46 Huang, X. et al. Human Coronavirus HKU1 Spike Protein Uses O-Acetylated Sialic Acid as an Attachment Receptor Determinant and Employs Hemagglutinin-Esterase Protein as a Receptor-Destroying Enzyme. J Virol 89, 7202-7213, doi:10.1128/JVI.00854-15 (2015).
47 Simmons, G. et al. Inhibitors of cathepsin L prevent severe acute respiratory syndrome coronavirus entry. Proc Natl Acad Sci U S A 102, 11876-11881, doi:0505577102 [pii]10.1073/pnas.0505577102 (2005).
48 Li, P. et al. Identification of H209 as Essential for pH 8-Triggered Receptor-Independent Syncytium Formation by S Protein of Mouse Hepatitis Virus A59. J Virol 92, doi:10.1128/JVI.00209-18 (2018).
49 Gunaratne, G. S., Yang, Y., Li, F., Walseth, T. F. & Marchant, J. S. NAADP-dependent Ca(2+) signaling regulates Middle East respiratory syndrome-coronavirus pseudovirus translocation through the endolysosomal system. Cell Calcium 75, 30-41, doi:10.1016/j.ceca.2018.08.003 (2018).
50 Ou, X. et al. Identification of the Fusion Peptide-Containing Region in Betacoronavirus Spike Glycoproteins. J Virol 90, 5586-5600, doi:10.1128/JVI.00015-16 (2016).
51 Mi, D. et al. Glycine 29 Is Critical for Conformational Changes of the Spike Glycoprotein of Mouse Hepatitis Virus A59 Triggered by either Receptor Binding or High pH. J Virol 93, doi:10.1128/JVI.01046-19 (2019).