1 Zhu, N. et al. A Novel Coronavirus from Patients with Pneumonia in China, 2019. N Engl J Med 382, 727-733, doi:10.1056/NEJMoa2001017 (2020).
2 World Health Organisation (WHO), Report on Coronavirus Disease 2019 (Covid-19) (44 Edn. Geneva: World Health Organisation. 2021).
3 German Ministry of Health, National COVID-19 Vaccination strategy (2021).
4 Sadarangani, M., Marchant, A. & Kollmann, T. R. Immunological mechanisms of vaccine-induced protection against COVID-19 in humans. Nat Rev Immunol 21, 475-484, doi:10.1038/s41577-021-00578-z (2021).
5 Carrillo, J. et al. Humoral immune responses and neutralizing antibodies against SARS-CoV-2; implications in pathogenesis and protective immunity. Biochem Biophys Res Commun 538, 187-191, doi:10.1016/j.bbrc.2020.10.108 (2021).
6 Wei, J. et al. Anti-spike antibody response to natural SARS-CoV-2 infection in the general population. Nat Commun 12, 6250, doi:10.1038/s41467-021-26479-2 (2021).
7 Cromer, D. et al. Neutralising antibody titres as predictors of protection against SARS-CoV-2 variants and the impact of boosting: a meta-analysis. Lancet Microbe 3, e52-e61, doi:10.1016/S2666-5247(21)00267-6 (2022).
8 Thomas, S. J. et al. Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine through 6 Months. N Engl J Med 385, 1761-1773, doi:10.1056/NEJMoa2110345 (2021).
9 Faustini, S. et al. Cross reactivity of spike glycoprotein induced antibody against Delta and Omicron variants before and after third SARS-CoV-2 vaccine dose in healthy and immunocompromised individuals. J Infect, doi:10.1016/j.jinf.2022.01.002 (2022).
10 Wilhelm, A. et al. Reduced Neutralization of SARS-CoV-2 Omicron Variant by Vaccine Sera and monoclonal antibodies. medRVix, https://doi.org/10.1101/2021.12.07.21267432 (2021)
11 Janik, E., Niemcewicz, M., Podogrocki, M., Majsterek, I. & Bijak, M. The Emerging Concern and Interest SARS-CoV-2 Variants. Pathogens 10, doi:10.3390/pathogens10060633 (2021).
12 Tang, J. W., Tambyah, P. A. & Hui, D. S. Emergence of a new SARS-CoV-2 variant in the UK. J Infect 82, e27-e28, doi:10.1016/j.jinf.2020.12.024 (2021).
13 Tegally, H. et al. Detection of a SARS-CoV-2 variant of concern in South Africa. Nature 592, 438-443, doi:10.1038/s41586-021-03402-9 (2021).
14 Widera, M. et al. Limited Neutralization of Authentic Severe Acute Respiratory Syndrome Coronavirus 2 Variants Carrying E484K In Vitro. J Infect Dis 224, 1109-1114, doi:10.1093/infdis/jiab355 (2021).
15 Ferreira, I. A. T. M. et al. SARS-CoV-2 B.1.617 Mutations L452R and E484Q Are Not Synergistic for Antibody Evasion. J Infect Dis 224, 989-994, doi:10.1093/infdis/jiab368 (2021).
16 Wilhelm, A. et al. Antibody-Mediated Neutralization of Authentic SARS-CoV-2 B.1.617 Variants Harboring L452R and T478K/E484Q. Viruses 13, doi:10.3390/v13091693 (2021).
17 Hoffmann, M. et al. SARS-CoV-2 variant B.1.617 is resistant to bamlanivimab and evades antibodies induced by infection and vaccination. Cell Rep 36, 109415, doi:10.1016/j.celrep.2021.109415 (2021).
18 Harvey, W. T. et al. SARS-CoV-2 variants, spike mutations and immune escape. Nat Rev Microbiol 19, 409-424, doi:10.1038/s41579-021-00573-0 (2021).
19 Dejnirattisai, W. et al. SARS-CoV-2 Omicron-B.1.1.529 leads to widespread escape from neutralizing antibody responses. Cell 185, 467-484.e415, doi:10.1016/j.cell.2021.12.046 (2022).
20 Viana, R. et al. Rapid epidemic expansion of the SARS-CoV-2 Omicron variant in southern Africa. Nature, doi:10.1038/s41586-022-04411-y (2022).
21 Majumdar, S. & Sarkar, R. Mutational and phylogenetic analyses of the two lineages of the Omicron variant. Journal of medical virology, doi:10.1002/jmv.27558 (2021).
22 Desingu, P. A., Nagarajan, K. & Dhama, K. Emergence of Omicron third lineage BA.3 and its importance. J Med Virol, doi:10.1002/jmv.27601 (2022).
23 Iuliano, D. A. et al. Trends in Disease Severity and Health Care Utilization During the Early Omicron Variant Period Compared with Previous SARS-CoV-2 HIgh Transmission Periods - United States, Dec 2020-Jan 2021. MMWR Morb Mortal Wkly Rep 2022; 71:146-152. DOI:http://dx.doi.org/10.15585/mmwr.mm7104e4external icon.
24 Cao, Y. et al. Omicron escapes the majority of existing SARS-CoV-2 neutralizing antibodies. Nature 602, 657-663, doi:10.1038/s41586-021-04385-3 (2022).
25 Carreño, J. M. et al. Activity of convalescent and vaccine serum against SARS-CoV-2 Omicron. Nature 602, 682-688, doi:10.1038/s41586-022-04399-5 (2022).
26 Rudan, I., Adeloye, D. & Sheikh, A. COVID 19: vaccines, efficacy and effects on variants. Curr Opin Pulm Med, doi:10.1097/MCP.0000000000000868 (2022).
27 Tseng, H. F. et al. Effectiveness of mRNA-1273 against SARS-CoV-2 Omicron and Delta variants. Nature medicine, doi:10.1038/s41591-022-01753-y (2022).
28 Choi, A. et al. Safety and immunogenicity of SARS-CoV-2 variant mRNA vaccine boosters in healthy adults: an interim analysis. Nat Med 27, 2025-2031, doi:10.1038/s41591-021-01527-y (2021).
29 Burki, T. K. Omicron variant and booster COVID-19 vaccines. Lancet Respir Med 10, e17, doi:10.1016/S2213-2600(21)00559-2 (2022).
30 Burki, T. K. Fourth dose of COVID-19 vaccines in Israel. Lancet Respir Med 10, e19, doi:10.1016/S2213-2600(22)00010-8 (2022).
31 Regev-Yochay, G et al. Efficacy of a Fourth Dose of Covid-19 mRNA Vaccine against Omicron. N Engl J Med doi: 10.1056/NEJMc2202542 (2022).
32 Gagne, M., Molivar, J., Foulds, K. & Seder, R. mRNA-1273 or mRNA-Omicron boost in vaccinated macaques elicits comparable B cell expansion, neutralizing antibodies and protection against Omicron. MedVRix, doi.org/10.1101/2022.02.03.479037 (2022).
33 Khoury, D. S. et al. Neutralizing antibody levels are highly predictive of immune protection from symptomatic SARS-CoV-2 infection. Nat Med 27, 1205-1211, doi:10.1038/s41591-021-01377-8 (2021).
34 Angyal, A. et al. T-cell and antibody responses to first BNT162b2 vaccine dose in previously infected and SARS-CoV-2-naive UK health-care workers: a multicentre prospective cohort study. Lancet Microbe 3, e21-e31, doi:1 0.1016/S2666-5247(21)00275-5 (2022).
35 Goldberg, Y. et al. Waning Immunity after the BNT162b2 Vaccine in Israel. N Engl J Med 385, e85, doi:10.1056/NEJMoa2114228 (2021).
36 Notarte, K. I. et al. Characterization of the significant decline in humoral immune response six months post-SARS-CoV-2 mRNA vaccination: A systematic review. J Med Virol, doi:10.1002/jmv.27688 (2022).
37 Coppeta, L. et al. Reduced Titers of Circulating Anti-SARS-CoV-2 Antibodies and Risk of COVID-19 Infection in Healthcare Workers during the Nine Months after Immunization with the BNT162b2 mRNA Vaccine. Vaccines (Basel) 10, doi:10.3390/vaccines10020141 (2022).
38 Borobia, A. M. et al. Immunogenicity and reactogenicity of BNT162b2 booster in ChAdOx1-S-primed participants (CombiVacS): a multicentre, open-label, randomised, controlled, phase 2 trial. Lancet 398, 121-130, doi:10.1016/S0140-6736(21)01420-3 (2021).
39 Ibarrondo, F. J. et al. Previous Infection Combined with Vaccination Produces Neutralizing Antibodies with Potency against SARS-CoV-2 Variants. mBio 12, e0265621, doi:10.1128/mBio.02656-21 (2021).
40 Wei, J. et al. Antibody responses and correlates of protection in the general population after two doses of the ChAdOx1 or BNT162b2 vaccines. Nat Med, doi:10.1038/s41591-022-01721-6 (2022).
41 Kuhlmann, C. et al. Breakthrough infections with SARS-CoV-2 omicron despite mRNA vaccine booster dose. Lancet 399, 625-626, doi:10.1016/S0140-6736(22)00090-3 (2022).
42 Cele, S. et al. Omicron extensively but incompletely escapes Pfizer BNT162b2 neutralization. Nature 602, 654-656, doi:10.1038/s41586-021-04387-1 (2022).
43 Cameroni, E. et al. Broadly neutralizing antibodies overcome SARS-CoV-2 Omicron antigenic shift. Nature 602, 664-670, doi:10.1038/s41586-021-04386-2 (2022).
44 Edara, V. V. et al. mRNA-1273 and BNT162b2 mRNA vaccines have reduced neutralizing activity against the SARS-CoV-2 omicron variant. Cell Rep Med 3, 100529, doi:10.1016/j.xcrm.2022.100529 (2022).
45 Lauring, A. S. et al. Clinical Severity and mRNA Vaccine Effectiveness for Omicron, Delta, and Alpha SARS-CoV-2 Variants in the United States: A Prospective Observational Study. medRxiv, doi:10.1101/2022.02.06.22270558 (2022).
46 Yu, J. et al. Comparable Neutralization of the SARS-CoV-2 Omicron BA.1 and BA.2 Variants. medRxiv, doi:10.1101/2022.02.06.22270533 (2022).
47 Chemaitelly , H. et al. Protection of Omicron sub-lineage infection against reinfection with another Omicron sub-lineage. medRxiv, doi: https://doi.org/10.1101/2022.02.24.22271440 (2022).
48 Stegger, M. et al. Occurance and significance of Omicron BA.1 infection followed by BA.2 reinfection. medRxiv. doi: https://doi.org/10.1101/2022.02.19.22271112 (2022).
49 Andrews, N. et al. Duration of Protection against Mild and Severe Disease by Covid-19 Vaccines. N Engl J Med 386, 340-350, doi:10.1056/NEJMoa2115481 (2022).
50 Delbrueck, M. et al. Characterization of the humoral immune response to BNT162b2 in elderly residents of long-term care facilities five to seven months after vaccination. medRxiv, doi: https://doi.org/10.1101/2021.11.09.21266110 (2021).
51 Toptan, T. et al. Optimized qRT-PCR Approach for the Detection of Intra- and Extra-Cellular SARS-CoV-2 RNAs. Int J Mol Sci 21, doi:10.3390/ijms21124396 (2020).
52 Widera, M. et al. Generation of a Sleeping Beauty Transposon-Based Cellular System for Rapid and Sensitive Screening for Compounds and Cellular Factors Limiting SARS-CoV-2 Replication. Front Microbiol 12, 701198, doi:10.3389/fmicb.2021.701198 (2021).
53 Bojkova, D. et al. Proteomics of SARS-CoV-2-infected host cells reveals therapy targets. Nature 583, 469-472, doi:10.1038/s41586-020-2332-7 (2020).
54 Spearman, C. The method of right and wrong cases (constant stimuli) without Gauss’s formulae. British Journal of Psychology 2, doi:doi: 10.1111/j.2044-8295.1908.tb00176.x (1908).
55 Kärber, G. Beitrag zur kollektiven Behandlung pharmakologischer Reihenversuche. Naunyn-Schmiedeberg's Archives of Pharmacology, pages 480–483, doi:doi: 10.1007/BF01863914 (1931).