[1] Gold, J.M. & Raja, A. Cisplatin. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing. https://www.ncbi.nlm.nih.gov/books/NBK547695/ (2020).
[2] Siddik, Z.H. Cisplatin: Mode of cytotoxic action and molecular basis of resistance. Oncogene22, 7265-7279 (2003).
[3] Quintanilha, J.C.F. et al. Cisplatin-induced human peripheral blood mononuclear cells’ oxidative stress and nephrotoxicity in head and neck cancer patients: the influence of hydrogen peroxide. Mol. Cell. Biochem. 440, 139-145 (2018).
[4] Visacri, M.B. et al. Adverse drug reactions and kinetics of cisplatin excretion in urine of patients undergoing cisplatin chemotherapy and radiotherapy for head and neck cancer: A prospective study. Daru25, 12 (2017).
[5] Miller, R.P., Tadagavadi, R.K., Ramesh, G. & Reeves, W.B. Mechanisms of cisplatin nephrotoxicity. Toxins (Basel) 2, 2490-2518 (2010).
[6] Ciarimboli, G. Membrane transporters as mediators of cisplatin side-effects. Anticancer Res.34, 547-550 (2014).
[7] Pabla, N., Murphy, R.F., Liu, K. & Dong, Z. The copper transporter Ctr1 contributes to cisplatin uptake by renal tubular cells during cisplatin nephrotoxicity. Am. J. Physiol. Renal Physiol.296, F505-F511 (2009).
[8] Eljack, N.D. et al. Mechanisms of cell uptake and toxicity of the anticancer drug cisplatin. Metallomics 6, 2126-2133 (2014).
[9] Herrera-Pérez, Z., Gretz, N. & Dweep, H. A Comprehensive Review on the Genetic Regulation of Cisplatin-induced Nephrotoxicity. Curr. Genomics17, 279-293 (2016).
[10] Gautier, J.C. et al. Evaluation of novel biomarkers of nephrotoxicity in two strains of rat treated with cisplatin. Toxicol. Pathol.38, 943-956 (2010).
[11] Quintanilha, J.C.F., Saavedra, K.F., Visacri, M.B., Moriel, P. & Salazar, L.A. Role of epigenetic mechanisms in cisplatin-induced toxicity. Crit. Rev. Oncol. Hematol.137, 131-142 (2019).
[12] Lagos-Quintana, M., Rauhut, R., Lendeckel, W. & Tuschl, T. Identification of novel genes coding for small expressed RNAs. Science294, 853-858 (2001).
[13] Pavkovic, M. et al. Detection of drug-induced acute kidney injury in humans using urinary KIM-1, miR-21, -200c, and -423. Toxicol. Sci. 152, 205-213 (2016).
[14] Weber, J.A. et al. The microRNA spectrum in 12 body fluids. Clin. Chem. 56, 1733-1741 (2010).
[15] Zhu, Y. et al. MicroRNA-146b, a Sensitive Indicator of Mesenchymal Stem Cell Repair of Acute Renal Injury. Stem Cells Transl. Med. 5, 1406-1415 (2016).
[16] Hao, J. et al. MicroRNA-375 is induced in cisplatin nephrotoxicity to repress hepatocyte nuclear factor 1-β. J. Biol. Chem. 292, 4571-4582 (2017).
[17] Volarevic, V. et al. Molecular mechanisms of cisplatin-induced nephrotoxicity: A balance on the knife edge between renoprotection and tumor toxicity. J. Biomed. Sci. 26, 25 (2019).
[18] Ramesh, G., Zhang, B., Uematsu, S., Akira, S. & Reeves, W.B. Endotoxin and cisplatin synergistically induce renal dysfunction and cytokine production in mice. Am. J. Physiol. Renal Physiol.239, F325-F232 (2007).
[19] Ramesh, G. & Brian Reeves, W. TNF-α mediates chemokine and cytokine expression and renal injury in cisplatin nephrotoxicity. J. Clin. Invest. 110, 835-842 (2002).
[20] Kumar, P., Sulakhiya, K., Barua, C.C. & Mundhe, N. TNF-α, IL-6 and IL-10 expressions, responsible for disparity in action of curcumin against cisplatin-induced nephrotoxicity in rats. Mol. Cell. Biochem. 431, 113-122 (2017).
[21] Wei, L. et al. AMP-activated protein kinase regulates autophagic protection against cisplatin-induced tissue injury in the kidney. Genet. Mol .Res.14, 12006-12015 (2015).
[22] White, E. Deconvoluting the context-dependent role for autophagy in cancer. Nat. Rev. Cancer12, 401-410 (2012).
[23] Kelland, L. The resurgence of platinum-based cancer chemotherapy. Nat. Rev. Cancer 7, 573-584 (2007).
[24] Townsend, D.M., Tew, K.D., He, L., King, J.B. & Hanigan, M.H. Role of glutathione S-transferase Pi in cisplatin-induced nephrotoxicity. Biomed. Pharmacother.63, 79-85 (2009).
[25] Sadzuka, Y., Shimizu, Y. & Takino, Y. Role of glutathione S-transferase isoenzymes in cisplatin-induced nephrotoxicity in the rat. Toxicol. Lett. 70, 221-222 (1994).
[26] Cockcroft, D.W. & Gault, M.H. Prediction of creatinine clearance from serum creatinine. Nephron 16, 31-41 (1976).
[27] Poel, D., Buffart, T.E., Oosterling-Jansen, J., Verheul, H.M.W. & Voortman, J. Evaluation of several methodological challenges in circulating miRNA qPCR studies in patients with head and neck cancer. Exp. Mol. Med.50, e454 (2018).
[28] Livak, K.J. & Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods 25, 402-408 (2001).
[29] RCore Team. R: A language and environment for statistical computing.Vienna, Austria: R Foundation for Statistical Computing (2020).
[30] Dweep, H. & Gretz, N. MiRWalk2.0: A comprehensive atlas of microRNA-target interactions. Nat. Methods12, 697 (2015).
[31] Agarwal, V., Bell, G.W., Nam, J.W. & Bartel, D.P. Predicting effective microRNA target sites in mammalian mRNAs. eLife4, e05005 (2015).
[32] Kanehisa, M. & Sato, Y. KEGG Mapper for inferring cellular functions from protein sequences. Protein Sci.29, 28-35 (2020).