1. United Nations. Guidelines for Reducing Flood Losses. Geneva: United Nations, 83 pp. https://sdgs.un.org/publications/guidelines-reducing-flood-losses-16964 (2004).
2. FEMA. Historical flood risk and costs. https://www.fema.gov/data-visualization/historical-flood-risk-and-costs (2021).
3. NOAA National Centers for Environmental Information (NCEI). U.S. billion-dollar weather and climate disasters. https://www.ncdc.noaa.gov/billions/ (2022).
4. Wing, O. E., Pinter, N., Bates, P. D. & Kousky, C. New insights into US flood vulnerability revealed from flood insurance big data. Nat. Commun. 11, 1444; 10.1038/s41467-020-15264-2 (2020).
5. Hsu, W. K. et al. An integrated flood risk assessment model for property insurance industry in Taiwan. Nat. Hazards 58(3), 1295−1309 (2011).
6. Michel-Kerjan, E., Czajkowski, J. & Kunreuther, H. Could flood insurance be privatised in the United States? A primer. Geneva Pap. R. I.- Iss. P. 40(2), 179−208 (2015).
7. Zhao, W., Kunreuther, H. & Czajkowski, J. Affordability of the National Flood Insurance Program: Application to Charleston County, South Carolina. Nat. Hazards Rev. 17(1), 04015020; 10.1061/(ASCE)NH.1527-6996.0000201 (2016).
8. Ermolieva, T. et al. Flood catastrophe model for designing optimal flood insurance program: Estimating location‐specific premiums in the Netherlands. Risk Anal. 37(1), 82−98 (2016).
9. de Moel, H., van Vliet, M. & Aerts, J. C. Evaluating the effect of flood damage-reducing measures: A case study of the unembanked area of Rotterdam, the Netherlands. Reg. Environ. Change 14(3), 895−908 (2014).
10. de Ruig, L. T., Haer, T., de Moel, H., Botzen, W. W. & Aerts, J. C. A micro-scale cost-benefit analysis of building-level flood risk adaptation measures in Los Angeles. Water Resour. Econ. 32, 100147; 10.1016/j.wre.2019.100147 (2020).
11. Ward, P. J. et al. A global framework for future costs and benefits of river-flood protection in urban areas. Nat. Clim. Change 7(9), 642−646 (2017).
12. Foster, J. H. Flood management: Who benefits and who pays. J. Am. Water Resour. As. 12(5), 1029−1040 (1976).
13. Xian, S., Lin, N. & Kunreuther, H. Optimal house elevation for reducing flood-related losses. J. Hydrol. 548, 63−74 (2017).
14. Zarekarizi, M., Srikrishnan, V. & Keller, K. Neglecting uncertainties biases house-elevation decisions to manage riverine flood risks. Nat. Commun. 11(1), 5361; 10.1038/s41467-020-19188-9 (2020).
15. Dubbelboer, J., Nikolic, I., Jenkins, K. & Hall, J. An agent-based model of flood risk and insurance. J JASSS-J. Artif. Soc. S. 20(1), 6; 10.18564/jasss.3135 (2021).
16. de Koning, K., Filatova, T. & Bin, O. Capitalization of flood insurance and risk perceptions in housing prices: An empirical agent-based model approach. South Econ. J. 85(4), 1159-1179 (2019); 10.1002/soej.12328
17. Brodie, I. M. Rational Monte Carlo method for flood frequency analysis in urban catchments. J. Hydrol. 486, 306-314 (2013).
18. Hennequin, T. et al. (2018). A framework for performing comparative LCA between repairing flooded houses and construction of dikes in non-stationary climate with changing risk of flooding. Sci. Total Environ. 642, 473–484 (2018).
19. Kind, J. M. Economically efficient flood protection standards for the Netherlands. J. Flood Risk Manag. 7(2), 103−117 (2014).
20. Kind, J., Botzen, W. W. & Aerts, J. C. Social vulnerability in cost-benefit analysis for flood risk management. Environ. Dev. Econ. 25(2), 115−134 (2020).
21. Qi, H., Qi, P. & Altinakar, M. S. GIS-based spatial Monte Carlo analysis for integrated flood management with two dimensional flood simulation. Water Resour. Manag. 27(10), 3631−3645 (2013).
22. Rahman, A. et al. Monte Carlo simulation of flood frequency curves from rainfall. J. Hydrol. 256(3−4), 196-210 (2002).
23. Taghinezhad, A., Friedland, C. J. & Rohli, R. V. Benefit-cost analysis of flood-mitigated residential buildings in Louisiana. Hous. Soc. 48(2), 185−202 (2020).
24. Yu, J. J., Qin, X. S. & Larsen, O. Joint Monte Carlo and possibilistic simulation for flood damage assessment. Stoch. Env. Res. Risk. A. 27(3), 725–735 (2013).
25. Bhat, M. S. et al. Flood frequency analysis of river Jhelum in Kashmir basin. Quatern. Int. 507, 288-294 (2019).
26. Kim, S. U. & Lee, C. E. Incorporation of cost-benefit analysis considering epistemic uncertainty for calculating the optimal design flood. Water Resour. Manag. 35(2), 757−774 (2021).
27. Manfreda, S., Miglino, D. & Albertini, C. Impact of detention dams on the probability distribution of floods. Hydrol. Earth Syst. Sci. 25(7), 4231−4242 (2021).
28. Prasanchum, H., Sirisook, P. & Lohpaisankrit, W. (2020). Flood risk areas simulation using swat and Gumbel distribution method in Yang catchment, northeast Thailand. Geogr. Tech. 15(2), 29−39 (2020).
29. Singh, P. et al. Vulnerability assessment of urban road network from urban flood. Int. J. Disast. Risk Re. 28, 237−250 (2018).
30. USACE. Economic Guidance Memorandum (EGM) 01-03, Generic Depth Damage Relationships. 1−3. In: Memorandum from USACE (United States Army Corps of Engineers), Washington, DC (2000).
31. Mostafiz, R. B. et al. A data-driven, probabilistic, multiple return period method of flood depth estimation. In AGU Fall Meeting Abstracts, American Geophysical Union (2021).
32. Amini, M. & Memari, A. M. Comparative review and assessment of various flood retrofit methods for low-rise residential buildings in coastal areas. Nat. Hazards Rev. 22(3), Art. No. 04021009; 10.1061/(ASCE)NH.1527-6996.0000464 (2021).
33. Moselle, B. 2019 National Building Cost Manual. Craftsman Book Company. https://www.craftsman-book.com/media/static/previews/2019_NBC_book_preview.pdf (2019).
34. Brotman, B. A. Insurance losses caused by residential housing flood events. Int. J. Hous. Mark. Anal. 15(2), 277−289 (2022).
35. Davids, P. R. & Thaler, T. Flood-resilient communities: How we can encourage adaptive behaviour through smart tools in public-private interaction. Urban Plan. 6(3), 272−282 (2021); 10.17645/up.v6i3.4246
36. Rufat, S. et al. Swimming alone? Why linking flood risk perception and behavior requires more than "it's the individual, stupid." WIREs-WATER 7(5), e1462; 10.1002/wat2.1462 (2020).