1.
Choi JM, Han SS, Kim HS. Industrial applications of enzyme biocatalysis: Current status
and future aspects. Biotechnol Adv. 2015;33(7):1443-1454.
2.
Li X, Zhang Z, Song J. Computational enzyme design approaches with significant biological
outcomes: progress and challenges. Comput Struct Biotechnol J. 2012;2(3):e201209007.
3.
Singh R, Kumar M, Mittal A, Mehta PK. Microbial enzymes: industrial progress in 21st
century. 3 Biotech. 2016;6(2):174.
4.
Anbu P, Gopinath SC, Cihan AC, Chaulagain BP. Microbial enzymes and their applications
in industries and medicine. Biomed Res Int. 2013;2013.
5.
Nigam P. Microbial enzymes with special characteristics for biotechnological applications.
Biomolecules. 2013;3(3):597-611.
6.
van den Brink J, de Vries RP. Fungal enzyme sets for plant polysaccharide degradation.
Appl Microbiol Biotechnol. 2011;91(6):1477.
7.
Tariq R, Ansari I, Qadir F, Ahmed A, Shariq M, Zafar U, Ahmad A, Khan SA, Sohail M.
Optimization of endoglucanase production from thermophilic strain of Bacillus licheniformis
RT-17 and its application for saccharification of sugarcane bagasse. Pak J Bot. 2018;50(2):807-816.
8.
Sajith S, Sreedevi S, Priji P, Unni KN, Benjamin S. Production and partial purification
of cellulase from a new isolate, Penicillium verruculosum BS3. Br Microbiol Res J.
2015;9.
9.
Saqib AA, Farooq A, Iqbal M, Hassan JU, Hayat U, Baig S. A thermostable crude endoglucanase
produced by Aspergillus fumigatus in a novel solid state fermentation process using
isolated free water. Enzyme Res. 2012;2012.
10.
El-Ghonemy DH, Ali TH, El-Bondkly AM, Moharam ME-S, Talkhan FN. Improvement of Aspergillus
oryzae NRRL 3484 by mutagenesis and optimization of culture conditions in solid-state
fermentation for the hyper-production of extracellular cellulase. Antonie Van Leeuwenhoek.
2014;106(5):853-864.
11.
Karmakar M, Ray R. Current trends in research and application of microbial cellulases.
Res J Microbiol. 2011;6(1):41-53.
12.
Sreena C, Sebastian D. Augmented cellulase production by Bacillus subtilis strain
MU S1 using different statistical experimental designs. Genet Eng Biotechnol J. 2018;16(1):9-16.
13.
Murad H, Azzaz H. Cellulase and dairy animal feeding. J Biotechnol. 2010;9(3):238-256.
14.
Wu B, Zheng S, Pedroso MM, Guddat LW, Chang S, He B, Schenk G. Processivity and enzymatic
mechanism of a multifunctional family 5 endoglucanase from Bacillus subtilis BS-5
with potential applications in the saccharification of cellulosic substrates. Biotechnol
Biofuels. 2018;11(1):20.
15.
Shajahan S, Moorthy IG, Sivakumar N, Selvakumar G. Statistical modeling and optimization
of cellulase production by Bacillus licheniformis NCIM 5556 isolated from the hot
spring, Maharashtra, India. J King Saud Univ Sci. 2017;29(3):302-310.
16.
Gupta C, Jain P, Kumar D, Dixit A, Jain R. Production of cellulase enzyme from isolated
fungus and its application as efficient refining aid for production of security paper.
Int J Appl Microbiol Biotechnol Res. 2015;311-19.
17.
Olanbiwoninu AA, Odunfa SA. Production of Cellulase and Xylanase by Aspergillus terreus
KJ829487 Using Cassava Peels as Subtrates. Adv Microbiol. 2016;6(07):502.
18.
Danmek K, Intawicha P, Thana S, Sorachakula C, Meijer M, Samson R. Characterization
of cellulase producing from Aspergillus melleus by solid state fermentation using
maize crop residues. Afr J Microbiol Res. 2014;8(24):2397-2404.
19.
Hu H, Van den Brink J, Gruben B, Wösten H, Gu J-D, De Vries R. Improved enzyme production
by co-cultivation of Aspergillus niger and Aspergillus oryzae and with other fungi.
Int Biodeterior Biodegradation. 2011;65(1):248-252.
20.
Pirota R, Tonelotto M, Delabona P, Fonseca R, Paixão D, Baleeiro F, Bertucci Neto
V, Farinas C. Bioprocess developments for cellulase production by Aspergillus oryzae
cultivated under solid-state fermentation. Braz J Chem Eng. 2016;33(1):21-31.
21.
Hirayama K, Watanabe H, Tokuda G, Kitamoto K, Arioka M. Purification and characterization
of termite endogenous β-1, 4-endoglucanases produced in Aspergillus oryzae. Biosci
Biotechnol Biochem. 2010;74(8):1680-1686.
22.
Mrudula S, Murugammal R. Production of cellulase by Aspergillus niger under submerged
and solid state fermentation using coir waste as a substrate. Braz J Microbiol. 2011;42(3):1119-1127.
23.
Sher H, Faheem M, Ghani A, Mehmood R, Rehman H, Bokhari SA. Optimization of cellulase
enzyme production from aspergillus oryzae For industrial applications. World J Biol
Biotechnol 2017;2(2):155-158.
24.
Vu VH, Pham TA, Kim K. Fungal strain improvement for cellulase production using repeated
and sequential mutagenesis. Mycobiology. 2009;37(4):267-271.
25.
Shahbazi S, Ispareh K, Karimi M, Askari H, Ebrahimi M. Gamma and UV radiation induced
mutagenesis in Trichoderma reesei to enhance cellulases enzyme activity. Int J Farming
Allied Sci (IJFAS). 2014;3(5):543-554.
26.
Kim SC, Kang SH, Choi EY, Hong YH, Bok JD, Kim JY, Lee SS, Choi YJ, Choi IS, Cho KK.
Cloning and characterization of an endoglucanase gene from Actinomyces sp. Korean
native goat 40. Asian-australas J Anim Sci. 2016;29(1):126.
27.
Kuhad RC, Gupta R, Singh A. Microbial cellulases and their industrial applications.
Enzyme Res. 2011;2011.
28.
Chand P, Aruna A, Maqsood A, Rao L. Novel mutation method for increased cellulase
production. J Appl Microbiol. 2005;98(2):318-323.
29.
Rashid MH, Javed MR, Kawaguchi T, Sumitani J-i, Arai M. Improvement of Aspergillus
oryzae for hyperproduction of endoglucanase: expression cloning of cmc-1 gene of Aspergillus
aculeatus. Biotechnol Lett. 2008;30(12):2165.
30.
Javed MR, Rashid MH, Nadeem H, Riaz M, Perveen R. Catalytic and thermodynamic characterization
of endoglucanase (CMCase) from Aspergillus oryzae cmc-1. Appl Biochem Biotechnol.
2009;157(3):483-497.
31.
Aleem B, Rashid MH, Zeb N, Saqib A, Ihsan A, Iqbal M, Ali H. Random mutagenesis of
super Koji (Aspergillus oryzae): improvement in production and thermal stability of
α-amylases for maltose syrup production. BMC Microbiol. 2018;18(1):200.
32.
Stojanović J, Jakovljević V, Matović I, Gajović O, Mijušković Z, Nedeljković T. Influence
of detergent on metabolic activity of fungi Aspergillus niger. Nat Sci. 2011;3(06):466.
33.
Mostafa AA. Effect of gamma irradiation on Aspergillus niger DNA and production of
cellulases enzymes. J Am Sci. 2014;10152-160.
34.
Maresma BG, Castillo BG, Fernández RC, Silva ESd, Maiorano AE, Rodrigues MFdA. Mutagenesis
of Aspergillus oryzae IPT-301 to improve the production of β-fructofuranosidase. Braz
J Microbiol. 2010;41(1):186-195.
35.
Abu‐Ghunmi L, Badawi M, Fayyad M, Detergents. Fate of Triton X‐100 Applications on Water and Soil Environments: A Review. J Surfactants Deterg. 2014;17(5):833-838.
36.
Gohel HR, Contractor CN, Ghosh SK, Braganza V. A comparative study of various staining
techniques for determination of extra cellular cellulase activity on Carboxy Methyl
Cellulose (CMC) agar plates. Int J Curr Microbiol App Sci. 2014;3261-266.
37.
Saroj P, Manasa P, Narasimhulu K. Characterization of thermophilic fungi producing
extracellular lignocellulolytic enzymes for lignocellulosic hydrolysis under solid-state
fermentation. Bioresour Bioprocess. 2018;5(1):31.
38.
Viniegra-González G, Favela-Torres E. Why solid-state fermentation seems to be resistant
to catabolite repression? Food Technol Biotechnol. 2006;44(3):397-406.
39.
Abdullah R, Ikram-ul-Haq I, Butt Z, Khattak MI. Random mutagenesis for enhanced production
of alpha amylase by Aspergillus oryzae IIB-30. Pak J Bot. 2013;45(1):269-274.
40.
Kobakhidze A, Asatiani M, Kachlishvili E, Elisashvili V. Induction and catabolite
repression of cellulase and xylanase synthesis in the selected white-rot basidiomycetes.
Ann Agrar Sci. 2016;14(3):169-176.
41.
Azin M, Noroozi E. Random mutagenesis and use of 2-deoxy-D-glucose as an antimetabolite
for selection of α-amylase-overproducing mutants of Aspergillus oryzae. World J Microbiol
Biotechnol. 2001;17(7):747-750.
42.
Das A, Paul T, Halder SK, Maity C, Das Mohapatra PK, Pati BR, Mondal KC. Study on
regulation of growth and biosynthesis of cellulolytic enzymes from newly isolated
Aspergillus fumigatus ABK9. Pol J Microbiol. 2013;62(1):31-43.
43.
Mariyam I. Multistep mutagenesis for the over-expression of cellulase in Humicola
insolens. Pak J Bot. 2011;43(1):669-677.
44.
Lynd LR, Weimer PJ, Van Zyl WH, Pretorius IS. Microbial cellulose utilization: fundamentals
and biotechnology. Microbiol Mol Biol Rev. 2002;66(3):506-577.
45.
Sun X, Liu Z, Zheng K, Song X, Qu Y. The composition of basal and induced cellulase
systems in Penicillium decumbens under induction or repression conditions. Enzyme
Microb Technol. 2008;42(7):560-567.
46.
Amore A, Giacobbe S, Faraco V. Regulation of cellulase and hemicellulase gene expression
in fungi. Curr genomics. 2013;14(4):230-249.
47.
Chen X, Li W, Ji P, Zhao Y, Hua C, Han C. Engineering the conserved and noncatalytic
residues of a thermostable β-1, 4-endoglucanase to improve specific activity and thermostability.
Sci Rep. 2018;8(1):2954.
48.
Ku T, Lu P, Chan C, Wang T, Lai S, Lyu P, Hsiao N. Predicting melting temperature
directly from protein sequences. Comput biol chem. 2009;33(6):445-450.
49.
Shirke AN, Su A, Jones JA, Butterfoss GL, Koffas MA, Kim JR, Gross RA. Comparative
thermal inactivation analysis of Aspergillus oryzae and Thiellavia terrestris cutinase:
role of glycosylation. Biotechnol bioeng. 2017;114(1):63-73.
50.
Lee KR, Yang SM, Cho SM, Kim M, Hong S-Y, Chung SH. Aflatoxin B1 Detoxification by
Aspergillus oryzae from Meju, a Traditional Korean Fermented Soybean Starter. J Microbiol
Biotechnol. 2017;27(1):57-66.
51.
Kniemeyer O. Proteomics of eukaryotic microorganisms: The medically and biotechnologically
important fungal genus Aspergillus. J Proteomics. 2011;11(15):3232-3243.
52.
De Santis B, Debegnach F, Gregori E, Russo S, Marchegiani F, Moracci G, Brera C. Development
of a LC-MS/MS method for the multi-mycotoxin determination in composite cereal-based
samples. J Toxins. 2017;9(5):169.
53.
Sahin S, Ozmen I, Bıyık H. Industrial Applications of Endoglucanase Obtained from
Novel and Native Trichoderma atroviride. CHEM BIOCHEM ENG Q. 2016;30(2):265-278.
54.
Gautam S, Bundela P, Pandey A, Awasthi M, Sarsaiya S. Effect of different carbon sources
on production of cellulases by Aspergillus niger. J App Sci Env Sanitation (JASES).
2010;5(3):295-300.
55.
Omojasola P, Jilani O. Cellulase production by Trichoderma longi, Aspergillus niger
and Saccharomyces cerevisae cultured on waste materials from orange. Pak J Biol Sci.
2008;11(20):2382-2388.
56.
Bradford MMJAb. A rapid and sensitive method for the quantitation of microgram quantities
of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72(1-2):248-254.
57.
Torpenholt S, De Maria L, Olsson MH, Christensen LH, Skjøt M, Westh P, Jensen JH,
Leggio LL. Effect of mutations on the thermostability of Aspergillus aculeatus β-1,
4-galactanase. Comput Struct Biotechnol J. 2015;13256-264.
58.
Zheng R, Xu H, Wang W, Zhan R, Chen W. Simultaneous determination of aflatoxin B 1,
B 2, G 1, G 2, ochratoxin A, and sterigmatocystin in traditional Chinese medicines
by LC–MS–MS. Anal Bioanal Chem. 2014;406(13):3031-3039.