1 Petrossian, T. C. & Clarke, S. G. Uncovering the human methyltransferasome. Mol Cell Proteomics 10, M110 000976, doi:10.1074/mcp.M110.000976 (2011).
2 Delaunay, S. & Frye, M. RNA modifications regulating cell fate in cancer. Nat Cell Biol 21, 552-559, doi:10.1038/s41556-019-0319-0 (2019).
3 Barbieri, I. & Kouzarides, T. Role of RNA modifications in cancer. Nat Rev Cancer 20, 303-322, doi:10.1038/s41568-020-0253-2 (2020).
4 Bahr, A., Hankeln, T., Fiedler, T., Hegemann, J. & Schmidt, E. R. Molecular analysis of METTL1, a novel human methyltransferase-like gene with a high degree of phylogenetic conservation. Genomics 57, 424-428, doi:10.1006/geno.1999.5780 (1999).
5 Shaheen, R. et al. Mutation in WDR4 impairs tRNA m(7)G46 methylation and causes a distinct form of microcephalic primordial dwarfism. Genome Biol 16, 210, doi:10.1186/s13059-015-0779-x (2015).
6 Lin, S. et al. Mettl1/Wdr4-Mediated m(7)G tRNA Methylome Is Required for Normal mRNA Translation and Embryonic Stem Cell Self-Renewal and Differentiation. Mol Cell 71, 244-255 e245, doi:10.1016/j.molcel.2018.06.001 (2018).
7 Okamoto, M. et al. tRNA modifying enzymes, NSUN2 and METTL1, determine sensitivity to 5-fluorouracil in HeLa cells. PLoS Genet 10, e1004639, doi:10.1371/journal.pgen.1004639 (2014).
8 Tian, Q. H. et al. METTL1 overexpression is correlated with poor prognosis and promotes hepatocellular carcinoma via PTEN. J Mol Med (Berl) 97, 1535-1545, doi:10.1007/s00109-019-01830-9 (2019).
9 Wang, P., Doxtader, K. A. & Nam, Y. Structural Basis for Cooperative Function of Mettl3 and Mettl14 Methyltransferases. Mol Cell 63, 306-317, doi:10.1016/j.molcel.2016.05.041 (2016).
10 Deng, X., Su, R., Feng, X., Wei, M. & Chen, J. Role of N(6)-methyladenosine modification in cancer. Curr Opin Genet Dev 48, 1-7, doi:10.1016/j.gde.2017.10.005 (2018).
11 Ignatova, V. V. et al. METTL6 is a tRNA m(3)C methyltransferase that regulates pluripotency and tumor cell growth. Sci Adv 6, eaaz4551, doi:10.1126/sciadv.aaz4551 (2020).
12 Ali, J. et al. METTL7B (methyltransferase-like 7B) identification as a novel biomarker for lung adenocarcinoma. Ann Transl Med 8, 1130, doi:10.21037/atm-20-4574 (2020).
13 Liu, S. et al. METTL13 Methylation of eEF1A Increases Translational Output to Promote Tumorigenesis. Cell 176, 491-504 e421, doi:10.1016/j.cell.2018.11.038 (2019).
14 Richard, E. M. et al. Bi-allelic Variants in METTL5 Cause Autosomal-Recessive Intellectual Disability and Microcephaly. Am J Hum Genet 105, 869-878, doi:10.1016/j.ajhg.2019.09.007 (2019).
15 Mariasina, S. S. et al. Williams-Beuren syndrome-related methyltransferase WBSCR27: cofactor binding and cleavage. FEBS J 287, 5375-5393, doi:10.1111/febs.15320 (2020).
16 Leismann, J. et al. The 18S ribosomal RNA m(6) A methyltransferase Mettl5 is required for normal walking behavior in Drosophila. EMBO Rep 21, e49443, doi:10.15252/embr.201949443 (2020).
17 Hoadley, K. A. et al. Cell-of-Origin Patterns Dominate the Molecular Classification of 10,000 Tumors from 33 Types of Cancer. Cell 173, 291-304 e296, doi:10.1016/j.cell.2018.03.022 (2018).
18 Gao, J. et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal 6, pl1, doi:10.1126/scisignal.2004088 (2013).
19 Zhang, B. et al. Clinical potential of mass spectrometry-based proteogenomics. Nat Rev Clin Oncol 16, 256-268, doi:10.1038/s41571-018-0135-7 (2019).
20 Gillette, M. A. et al. Proteogenomic Characterization Reveals Therapeutic Vulnerabilities in Lung Adenocarcinoma. Cell 182, 200-225 e235, doi:10.1016/j.cell.2020.06.013 (2020).
21 Krug, K. et al. Proteogenomic Landscape of Breast Cancer Tumorigenesis and Targeted Therapy. Cell 183, 1436-1456 e1431, doi:10.1016/j.cell.2020.10.036 (2020).
22 Gentles, A. J. et al. The prognostic landscape of genes and infiltrating immune cells across human cancers. Nat Med 21, 938-945, doi:10.1038/nm.3909 (2015).
23 Cancer Genome Atlas Research, N. Comprehensive molecular profiling of lung adenocarcinoma. Nature 511, 543-550, doi:10.1038/nature13385 (2014).
24 Gyorffy, B., Surowiak, P., Budczies, J. & Lanczky, A. Online survival analysis software to assess the prognostic value of biomarkers using transcriptomic data in non-small-cell lung cancer. PLoS One 8, e82241, doi:10.1371/journal.pone.0082241 (2013).
25 Tsherniak, A. et al. Defining a Cancer Dependency Map. Cell 170, 564-576 e516, doi:10.1016/j.cell.2017.06.010 (2017).
26 Ghandi, M. et al. Next-generation characterization of the Cancer Cell Line Encyclopedia. Nature 569, 503-508, doi:10.1038/s41586-019-1186-3 (2019).
27 Nusinow, D. P. et al. Quantitative Proteomics of the Cancer Cell Line Encyclopedia. Cell 180, 387-402 e316, doi:10.1016/j.cell.2019.12.023 (2020).
28 Meyers, R. M. et al. Computational correction of copy number effect improves specificity of CRISPR-Cas9 essentiality screens in cancer cells. Nat Genet 49, 1779-1784, doi:10.1038/ng.3984 (2017).
29 Rauscher, B. et al. Toward an integrated map of genetic interactions in cancer cells. Mol Syst Biol 14, e7656, doi:10.15252/msb.20177656 (2018).
30 Volkamer, A., Kuhn, D., Rippmann, F. & Rarey, M. DoGSiteScorer: a web server for automatic binding site prediction, analysis and druggability assessment. Bioinformatics 28, 2074-2075, doi:10.1093/bioinformatics/bts310 (2012).
31 Leulliot, N. et al. Structure of the yeast tRNA m7G methylation complex. Structure 16, 52-61, doi:10.1016/j.str.2007.10.025 (2008).
32 Davis, I. W. & Baker, D. RosettaLigand docking with full ligand and receptor flexibility. J Mol Biol 385, 381-392, doi:10.1016/j.jmb.2008.11.010 (2009).
33 Waterhouse, A. et al. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res 46, W296-W303, doi:10.1093/nar/gky427 (2018).
34 Tyka, M. D. et al. Alternate states of proteins revealed by detailed energy landscape mapping. J Mol Biol 405, 607-618, doi:10.1016/j.jmb.2010.11.008 (2011).
35 Khatib, F. et al. Algorithm discovery by protein folding game players. Proc Natl Acad Sci U S A 108, 18949-18953, doi:10.1073/pnas.1115898108 (2011).
36 Gray, J. J. et al. Protein-protein docking with simultaneous optimization of rigid-body displacement and side-chain conformations. J Mol Biol 331, 281-299, doi:10.1016/s0022-2836(03)00670-3 (2003).
37 Marze, N. A. et al. Modeling oblong proteins and water-mediated interfaces with RosettaDock in CAPRI rounds 28-35. Proteins 85, 479-486, doi:10.1002/prot.25168 (2017).
38 Binder, J. X. et al. COMPARTMENTS: unification and visualization of protein subcellular localization evidence. Database (Oxford) 2014, bau012, doi:10.1093/database/bau012 (2014).
39 Lan, Q. et al. The Critical Role of RNA m(6)A Methylation in Cancer. Cancer Res 79, 1285-1292, doi:10.1158/0008-5472.CAN-18-2965 (2019).
40 Xu, L. et al. Three distinct 3-methylcytidine (m(3)C) methyltransferases modify tRNA and mRNA in mice and humans. J Biol Chem 292, 14695-14703, doi:10.1074/jbc.M117.798298 (2017).
41 Lentini, J. M., Alsaif, H. S., Faqeih, E., Alkuraya, F. S. & Fu, D. DALRD3 encodes a protein mutated in epileptic encephalopathy that targets arginine tRNAs for 3-methylcytosine modification. Nat Commun 11, 2510, doi:10.1038/s41467-020-16321-6 (2020).
42 Sun, J. R. et al. Genome-Wide Profiling of Alternative Splicing Signature Reveals Prognostic Predictor for Esophageal Carcinoma. Front Genet 11, 796, doi:10.3389/fgene.2020.00796 (2020).
43 Lv, J., He, Y., Li, L. & Wang, Z. Alternative Splicing Events and Splicing Factors Are Prognostic in Adrenocortical Carcinoma. Front Genet 11, 918, doi:10.3389/fgene.2020.00918 (2020).
44 Wu, Z. et al. A Novel Prognostic Index Based on Alternative Splicing in Papillary Renal Cell Carcinoma. Front Genet 10, 1333, doi:10.3389/fgene.2019.01333 (2019).
45 Meng, T. et al. Identification of Prognostic and Metastatic Alternative Splicing Signatures in Kidney Renal Clear Cell Carcinoma. Front Bioeng Biotechnol 7, 270, doi:10.3389/fbioe.2019.00270 (2019).
46 Mackie, B. D. et al. Selective Peptidomimetic Inhibitors of NTMT1/2: Rational Design, Synthesis, Characterization, and Crystallographic Studies. J Med Chem 63, 9512-9522, doi:10.1021/acs.jmedchem.0c00689 (2020).
47 Zhang, G., Richardson, S. L., Mao, Y. & Huang, R. Design, synthesis, and kinetic analysis of potent protein N-terminal methyltransferase 1 inhibitors. Org Biomol Chem 13, 4149-4154, doi:10.1039/c5ob00120j (2015).
48 Guo, T., Ma, H. & Zhou, Y. Bioinformatics analysis of microarray data to identify the candidate biomarkers of lung adenocarcinoma. PeerJ 7, e7313 (2019).
49 Liu, D. et al. METTL7B Is Required for Cancer Cell Proliferation and Tumorigenesis in Non-Small Cell Lung Cancer. Frontiers in pharmacology 11, 178 (2020).
50 Feltes, B. C., Poloni, J. F., Nunes, I. J. G., Faria, S. S. & Dorn, M. Multi-Approach Bioinformatics Analysis of Curated Omics Data Provides a Gene Expression Panorama for Multiple Cancer Types. Front Genet 11, 586602, doi:10.3389/fgene.2020.586602 (2020).
51 Zehmer, J. K. et al. Targeting sequences of UBXD8 and AAM-B reveal that the ER has a direct role in the emergence and regression of lipid droplets. J Cell Sci 122, 3694-3702, doi:10.1242/jcs.054700 (2009).
52 Zehmer, J. K., Bartz, R., Liu, P. & Anderson, R. G. Identification of a novel N-terminal hydrophobic sequence that targets proteins to lipid droplets. J Cell Sci 121, 1852-1860, doi:10.1242/jcs.012013 (2008).
53 Qi, L. et al. An RNA editing/dsRNA binding-independent gene regulatory mechanism of ADARs and its clinical implication in cancer. Nucleic Acids Res 45, 10436-10451, doi:10.1093/nar/gkx667 (2017).
54 Zhou, S. et al. DNA methylation of METTL7A gene body regulates its transcriptional level in thyroid cancer. Oncotarget 8, 34652 (2017).
55 Wu, C. C. et al. Organellar proteomics reveals Golgi arginine dimethylation. Molecular biology of the cell 15, 2907-2919 (2004).
56 McKinnon, C. M. & Mellor, H. The tumor suppressor RhoBTB1 controls Golgi integrity and breast cancer cell invasion through METTL7B. BMC cancer 17, 1-9 (2017).
57 Maldonato, B. J. & Totah, R. A. Human METTL7B Encodes an Alkyl Thiol Methyltransferase that Methylates Hydrogen Sulfide. bioRxiv, 2020.2003.2006.979542, doi:10.1101/2020.03.06.979542 (2020).
58 Boulias, K. & Greer, E. L. Put the Pedal to the METTL1: Adding Internal m(7)G Increases mRNA Translation Efficiency and Augments miRNA Processing. Mol Cell 74, 1105-1107, doi:10.1016/j.molcel.2019.06.004 (2019).
59 Zhang, L. S. et al. Transcriptome-wide Mapping of Internal N(7)-Methylguanosine Methylome in Mammalian mRNA. Mol Cell 74, 1304-1316 e1308, doi:10.1016/j.molcel.2019.03.036 (2019).
60 Dewez, M. et al. The conserved Wobble uridine tRNA thiolase Ctu1-Ctu2 is required to maintain genome integrity. Proc Natl Acad Sci U S A 105, 5459-5464, doi:10.1073/pnas.0709404105 (2008).
61 Rapino, F. et al. Codon-specific translation reprogramming promotes resistance to targeted therapy. Nature 558, 605-609, doi:10.1038/s41586-018-0243-7 (2018).
62 Lin, J. et al. Exportin-T promotes tumor proliferation and invasion in hepatocellular carcinoma. Mol Carcinog 58, 293-304, doi:10.1002/mc.22928 (2019).
63 Hoy, S. M. Tazemetostat: First Approval. Drugs 80, 513-521, doi:10.1007/s40265-020-01288-x (2020).
64 Rugo, H. S. et al. The Promise for Histone Methyltransferase Inhibitors for Epigenetic Therapy in Clinical Oncology: A Narrative Review. Adv Ther 37, 3059-3082, doi:10.1007/s12325-020-01379-x (2020).
65 Richart, L. & Margueron, R. Drugging histone methyltransferases in cancer. Curr Opin Chem Biol 56, 51-62, doi:10.1016/j.cbpa.2019.11.009 (2020).
66 Bedi, R. K. et al. Small-Molecule Inhibitors of METTL3, the Major Human Epitranscriptomic Writer. ChemMedChem 15, 744-748, doi:10.1002/cmdc.202000011 (2020).
67 Guy, M. P. & Phizicky, E. M. Two-subunit enzymes involved in eukaryotic post-transcriptional tRNA modification. RNA Biol 11, 1608-1618, doi:10.1080/15476286.2015.1008360 (2014).
68 Gillette, M. A. et al. Proteogenomic characterization reveals therapeutic vulnerabilities in lung adenocarcinoma. Cell 182, 200-225. e235 (2020).
69 Dou, Y. et al. Proteogenomic characterization of endometrial carcinoma. Cell 180, 729-748. e726 (2020).
70 Clark, D. J. et al. Integrated Proteogenomic Characterization of Clear Cell Renal Cell Carcinoma. Cell 179, 964-983 e931, doi:10.1016/j.cell.2019.10.007 (2019).
71 Hu, Y. et al. Integrated Proteomic and Glycoproteomic Characterization of Human High-Grade Serous Ovarian Carcinoma. Cell Rep 33, 108276, doi:10.1016/j.celrep.2020.108276 (2020).
72 Vasaikar, S. et al. Proteogenomic Analysis of Human Colon Cancer Reveals New Therapeutic Opportunities. Cell 177, 1035-1049 e1019, doi:10.1016/j.cell.2019.03.030 (2019).
73 Vasaikar, S. V., Straub, P., Wang, J. & Zhang, B. LinkedOmics: analyzing multi-omics data within and across 32 cancer types. Nucleic Acids Res 46, D956-D963, doi:10.1093/nar/gkx1090 (2018).
74 Berman, H. M. et al. The Protein Data Bank. Nucleic Acids Res 28, 235-242, doi:10.1093/nar/28.1.235 (2000).
75 Salentin, S., Schreiber, S., Haupt, V. J., Adasme, M. F. & Schroeder, M. PLIP: fully automated protein-ligand interaction profiler. Nucleic Acids Res 43, W443-447, doi:10.1093/nar/gkv315 (2015).
76 Pettersen, E. F. et al. UCSF Chimera--a visualization system for exploratory research and analysis. J Comput Chem 25, 1605-1612, doi:10.1002/jcc.20084 (2004).