The Consortium to Inform Molecular and Practical Approaches to CNS Tumor Taxonomy (cIMPACT-NOW) recently recognized the classification of EPN-PF into two subtypes, according to their methylation levels[22]. The occurrence of tumors is often accompanied by an imbalance in DNA methylation and inactivation of tumor suppressor genes by abnormal methylation is particularly important[23]. Since EPN-PFA is more likely to occur in children under 5 years of age and has a poor prognosis, most of the studies previously conducted have focused on its molecular biological characteristics, namely the deletion mechanism of H3K27me3.
In the present study, we first identified key differential genes between EPN-PFA and EPN-PFB by performing a combined analysis of transcriptome, methylation, and WGCNA, and then analyzed the relationship between the key differential genes and immune pathways in an attempt to explore the role and influence of immune-related pathways in prognosis. Through a multi-omic analysis using expression profiles and methylation profiles, EPN-PF-related DMGs were identified by merging Hypo-HGs and Hyper-LGs together. GO, KEGG, and PPI analyses showed that these DMGs are closely related to the occurrence and development of tumors and immune response pathways such as extracellular matrix organization, neuroinflammatory response, and NF-kappa B signaling pathway.
We then performed a multi-omic WGCNA to systematically identify modules related to EPN-PF based on expression pattern similarities in the 54 samples. In the blue module, which contained 805 genes, we selected 180 hub genes related to EPN-PF. Comparing these genes and the EPN-PF-related DMGs obtained above, we identified five EPN-PF-related hub DMGs: ATP4B, CCDC151, DMKN, SCN4B, and TUBA4B. All of the five genes were highly expressed in EPN-PFB and were less expressed in EPN-PFA. We verified that ATP4B, CCDC151, DMKN, and SCN4B levels were decreased in EPN-PFA compared with EPN-PFB, which was consistent with the predictions. However, perhaps due to the limitation of sample size, the difference in SCN4B was not statistically significant.
The role of these five genes in EPN-PF has never been investigated. The gastric H+, K+-ATPase(ATP4) is a dimeric heterodimer composed of two catalytic α-subunits and two regulatory β subunits. The β subunits were coded using ATP4B genes[24]. Many studies have revealed that ATP4B expression is decreased in human gastric cancer(GC)[25–28], and some studies have reported abnormal expression of ATP4B in other diseases such as human hepatocellular carcinoma(HCC)[29], laryngopharyngeal reflux, and laryngeal cancer [30]. However, to date, there are no studies about the relationship between this gene and EPN-PF. Similar to the EPN-PF, the ATP4B expression was decreased in GC associated with DNA hypermethylation[31]. A study reported that ATP4B could affect part of nerve function through the immune pathway, and then affect the mental state[32], prompting that ATP4B may affect the prognosis of patients by affecting mental health and immune function.
The CCDC151 gene encodes a coiled-coil protein critical for ODA-complex assembly. Several studies have shown that CCDC151 nonsense mutations can cause primary ciliary dyskinesia (PCD), a complex disease caused by structural or developmental defects that hinder the normal movement of cilia[33–35]. In many organs and systems of humans and mice, movable cilia play a key role in the flow of physiological fluids along the epithelial surface, and in the nervous system, cilia are essential for the normal flow of cerebrospinal fluid (CSF) into the central canal of the spinal cord[36–37]. A recent study showed that functional loss of CCDC151 could lead to hydrocephalus in a mouse model of primary ciliary dyskinesia[38]. Therefore, the low expression of CCDC151 may affect the prognosis of EPN-PFA children by casing hydrocephalus.
The DMKN gene is located on human chromosome 19q13.12 and encodes 10 putative dermokine (DMKN) transcriptional subtypes in normal epidermis[39]. Studies have confirmed that the abnormal expression of DMKN is related to skin cancer[40], pancreatic cancer[41], colorectal cancer[42], and other cancers, but no study has shown its role in nervous system tumors. However, a report showing that DMKN can affect the activation of STAT3 and down-stream molecular proteins of the MAPK and PI3K signaling pathways suggests that DMKN may play a role in nervous system tumors through this pathway[41].
Sodium voltage-gated channel beta subunit 4 (SCN4B), one of the beta subunits of the sodium channel, regulates the channel gated dynamics and causes voltage-dependent negative shifts in the activation of some α-sodium channels[43]. The variants in SCN4B have been shown to be associated with ventricular tachyacrdia[44], Huntington’s disease[45], and can be a new biomarker of aggressive cancers[45]. Moreover, Marin et al. showed that SCN4B has a very high interconnection and participation in febrile seizures,nervous disorders, neuromuscular and neurodegenerative diseases, and neurobehavioral manifestations[47]. Therefore, we can boldly speculate that SCN4B is related to EPN-PF. Similar to SCN4B, the low expression of Tubulin alpha 4b (TUBA4B) has also been shown to be significantly associated with poor prognosis of cancer patients[48].
In a variety of human cancers, there is increasing evidence that immunobiology plays an important role in tumor eradication or promotion. The interaction of immunobiological factors in central nervous system malignant tumors has been widely studied[49–52]. Some studies have also confirmed that immunity in EPN-PF plays a role[53–54], but the number and depth of research is far from enough. Therefore, we conducted the ssGSEA and GSVA algorithms to explore the possible role of EPN-PF-related hub DMGs in the immune system. Through the ssGSEA analysis, we clearly demonstrated that the EPN-PFA and EPN-PFB have significant differences in immunological characteristics, which is consistent with previous studies[54]. Our GSVA analysis showed three crucial pathways related to these five hub genes: PI3K-Akt-mTOR, TNFα-NFKB, and hypoxia.
In a recent study, Michealraj et al. showed that the hypoxic microenvironment is essential for the propagation and growth of EPN-PFA and is associated with poor prognosis[55]. In our study, all five hub genes were connected with hypoxia and confirmed previous research from some aspects. Other enriched biological pathways, such as the PI3K-Akt signaling pathway and extracellular matrix organization, were also closely related to tumor progression and hypoxic microenvironment formation. Moreover, the hypoxic microenvironment could affect the metabolism of tumor cell, induce adaptive changes in cell metabolism, and regulate complex cell signaling pathways, such as NFKB, which participates in inflammatory response and regulates cell proliferation and survival[56–57].