The COVID-19 pandemic has focused attention to crucial role of diagnostic techniques in controlling infectious diseases. The standard current diagnostic methods used for SARS-CoV-2 infection based on the stage of disease are nucleic acid-based molecular tests (RT-PCR) and antibody-based tests (Serologic tests). The RT-PCR is used for the early detection of the infection and target SARS-CoV-2 N gene and ORF1ab, while serological test is applied for assessing the disease progression [31, 32]. After SARS infection, IgM antibodies are produced by immune cells during the early stages of infection, followed by IgG generated in the later stages of SARS-CoV-2 infection. The detection of IgM antibody indicates a recent exposure to SARS-CoV-2 and the detection of IgG antibody in the absence of detectable IgM antibody, indicates prior virus exposure [13, 16]. IgG immunoglobulins are monomeric antibodies in the serum and crucial in maintaining long-term immunity or immunological memory after infection [33]. In general, IgM is detectable after 3–6 days, and IgG is detectable after 8 days [34], while viral RNA may be undetectable even after two weeks due to its rapidly decreased level [12]. Therefore, the IgM and IgG antibodies become the main and most accurate procedure to detect an active SARS-CoV-2 infection or even resolved after two months [12, 16]. In this study, we assessed the clinical features and the changed levels of IgG and IgM in 100 COVID-19 patients categorized into mild, moderate and sever groups. All patients showed high specific IgG level which suggested they infected with SARS-CoV-2. According to our results, there was a significant relationship between some clinical symptoms including obesity, fever, and shortness of breath, muscle soreness, odor disorder and taste disorder with the disease severity in COVID-19 patients. However, we found no significant association between age, sex, blood group, some underlying disease including diabetic, hypertension, cardiovascular disease and asthma disease with disease severity. In contrast with our results, a previous study performed by Sotgiu et al. reported a significant correlation between age and sex of COVID-19 patients with severity of the illness. They showed that IgM antibody was dramatically increased in patients in the age groups 20–29 years and 60–69 years compared with those aged from 30 to 59 years. Also, they found a statistically significant higher IgM in males than in females (24.3% VS. 9.1%), showing males were at highest risk of infection and severe disease [33]. Furthermore, our data showed a significantly association between IgG level and severity of disease. The IgG level was found to be significantly higher in severe group than mild group, two months after admission. Thus, the sever patients with higher level of IgG had better and longer-term immunity within weeks or months after infection compare to mild and mediated groups. Our results were comparable with several previous findings of SARS-CoV infections. In compliance with our finding, a previous MERS-CoV study showed that the levels of IgM and IgG antibodies were higher in sever patients compared to patients with mild infection [35, 36]. More studies by Qu and zho et al. reported the delayed IgG and IgM antibody responses as well as higher level of IgG in the critical group compared to non-critical groups [17, 37]. Xie et.al found a higher IgG level in severe than non-sever groups. They also demonstrated a weak correlation between IgM and NEU% percent [37]. In another study done by Park et al. on MERS-CoV, they found that level of IgM antibody response was correlated with reduced disease severity in infected patients [38]. In contrast with our results, Hou revealed that SARS-CoV-2-specific IgM levels were higher and IgG levels were lower in patients in the critical group. While, in the mild group patients compared with the other groups, IgG was maintained at a high level and IgM levels gradually decreased probably due to a compromised immune response in these patients [26]. Moreover, in our study, some laboratory abnormalities including increased levels of ferritin, D-dimer level, LHD, AST, ALT and ALP, decreased fibrinogen levels, lower LYM counts, higher WBC and NUT count were observed in most patients after admission in hospital (step1) compare to two months after admission for COVID-19 (step2). In companion between sever and non-sever groups (mild/moderate), we found a significant higher level of IgG in sever than mild group which was significantly associated with the higher WBC, NUT counts and lower LYM counts (p < .05). Thereby, the increased titers of anti-virus antibody IgG had a positive association with increased severity of the disease (p < 0.05), also longer immunity time after infection in sever patients compared to mild/moderate patients. More interesting that the decreased level of platelets after admission in hospital (step1) compare to two months after admission for COVID-19 (step2) was significantly correlated with the disease severity. In this way, the decreased value of platelets in baseline (step 1) was statistically higher and more significant in moderate to severe groups (p < 0.056, p < 0.023, respectively) than those in mild group (p < 0.974). This finding is likely to be related to the elevated serum D-dimer and changed fibrinogen levels after admission, also blood coagulation and the incidence of strokes in patients with COVID-19 months after recovery.