1. Kahn, R.S., et al. Schizophrenia. Nature reviews. Disease primers 1, 15067 (2015).
2. Vos, T., et al. Global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. The Lancet 390, 1211-1259 (2017).
3. World-Health-Organization. Schizophrenia. (Geneva, 2022).
4. Cetin-Karayumak, S., et al. White matter abnormalities across the lifespan of schizophrenia: a harmonized multi-site diffusion MRI study. Mol Psychiatry 25, 3208-3219 (2020).
5. Maas, D.A., Vallès, A. & Martens, G.J.M. Oxidative stress, prefrontal cortex hypomyelination and cognitive symptoms in schizophrenia. Translational psychiatry 7, e1171 (2017).
6. Mauney, S.A., Pietersen, C.Y., Sonntag, K.C. & Woo, T.W. Differentiation of oligodendrocyte precursors is impaired in the prefrontal cortex in schizophrenia. Schizophrenia research 169, 374-380 (2015).
7. Takahashi, N., Sakurai, T., Davis, K.L. & Buxbaum, J.D. Linking oligodendrocyte and myelin dysfunction to neurocircuitry abnormalities in schizophrenia. Progress in neurobiology 93, 13-24 (2011).
8. Foong, J., et al. Investigating regional white matter in schizophrenia using diffusion tensor imaging. Neuroreport 13, 333-336 (2002).
9. Mighdoll, M.I., Tao, R., Kleinman, J.E. & Hyde, T.M. Myelin, myelin-related disorders, and psychosis. Schizophrenia research 161, 85-93 (2015).
10. Price, G., Bagary, M.S., Cercignani, M., Altmann, D.R. & Ron, M.A. The corpus callosum in first episode schizophrenia: a diffusion tensor imaging study. Journal of neurology, neurosurgery, and psychiatry 76, 585-587 (2005).
11. Steel, R.M., et al. Diffusion tensor imaging (DTI) and proton magnetic resonance spectroscopy (1H MRS) in schizophrenic subjects and normal controls. Psychiatry research 106, 161-170 (2001).
12. Katsel, P., et al. Expression of mutant human DISC1 in mice supports abnormalities in differentiation of oligodendrocytes. Schizophrenia research 130, 238-249 (2011).
13. Vasistha, N.A., et al. Familial t(1;11) translocation is associated with disruption of white matter structural integrity and oligodendrocyte-myelin dysfunction. Mol Psychiatry 24, 1641-1654 (2019).
14. Lake, B.B., et al. Integrative single-cell analysis of transcriptional and epigenetic states in the human adult brain. Nature biotechnology 36, 70-80 (2018).
15. Zhang, Y., et al. An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. The Journal of neuroscience : the official journal of the Society for Neuroscience 34, 11929-11947 (2014).
16. Millar, J.K., et al. Disruption of two novel genes by a translocation co-segregating with schizophrenia. Human molecular genetics 9, 1415-1423 (2000).
17. Callicott, J.H., et al. Variation in DISC1 affects hippocampal structure and function and increases risk for schizophrenia. Proc Natl Acad Sci U S A 102, 8627-8632 (2005).
18. Nakata, K., et al. DISC1 splice variants are upregulated in schizophrenia and associated with risk polymorphisms. Proc Natl Acad Sci U S A 106, 15873-15878 (2009).
19. Newburn, E.N., et al. Interactions of human truncated DISC1 proteins: implications for schizophrenia. Translational psychiatry 1, e30 (2011).
20. Provenzano, F.A., et al. Hippocampal Pathology in Clinical High-Risk Patients and the Onset of Schizophrenia. Biological psychiatry 87, 234-242 (2020).
21. Ma, L., et al. Cloning and characterization of Disc1, the mouse ortholog of DISC1 (Disrupted-in-Schizophrenia 1). Genomics 80, 662-672 (2002).
22. Owen, M.J., Sawa, A. & Mortensen, P.B. Schizophrenia. Lancet (London, England) 388, 86-97 (2016).
23. Jones, C.A., Watson, D.J. & Fone, K.C. Animal models of schizophrenia. British journal of pharmacology 164, 1162-1194 (2011).
24. Gao, R. & Penzes, P. Common mechanisms of excitatory and inhibitory imbalance in schizophrenia and autism spectrum disorders. Curr Mol Med 15, 146-167 (2015).
25. Canitano, R. & Pallagrosi, M. Autism Spectrum Disorders and Schizophrenia Spectrum Disorders: Excitation/Inhibition Imbalance and Developmental Trajectories. Front Psychiatry 8, 69 (2017).
26. Azim, K., Rivera, A., Raineteau, O. & Butt, A.M. GSK3beta regulates oligodendrogenesis in the dorsal microdomain of the subventricular zone via Wnt-beta-catenin signaling. Glia 62, 778-779 (2014).
27. Cross, D.A., Alessi, D.R., Cohen, P., Andjelkovich, M. & Hemmings, B.A. Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature 378, 785-789 (1995).
28. Lochhead, P.A., et al. A chaperone-dependent GSK3beta transitional intermediate mediates activation-loop autophosphorylation. Molecular cell 24, 627-633 (2006).
29. Mao, Y., et al. Disrupted in schizophrenia 1 regulates neuronal progenitor proliferation via modulation of GSK3beta/beta-catenin signaling. Cell 136, 1017-1031 (2009).
30. Kim, J.Y., et al. DISC1 regulates new neuron development in the adult brain via modulation of AKT-mTOR signaling through KIAA1212. Neuron 63, 761-773 (2009).
31. Jope, R.S. & Johnson, G.V. The glamour and gloom of glycogen synthase kinase-3. Trends in biochemical sciences 29, 95-102 (2004).
32. Fancy, S.P., et al. Parallel states of pathological Wnt signaling in neonatal brain injury and colon cancer. Nature neuroscience 17, 506-512 (2014).
33. Niu, J., et al. Oligodendroglial ring finger protein Rnf43 is an essential injury-specific regulator of oligodendrocyte maturation. Neuron 109, 3104-3118.e3106 (2021).
34. Wodarz, A. & Nusse, R. Mechanisms of Wnt signaling in development. Annual review of cell and developmental biology 14, 59-88 (1998).
35. Hsieh, J.C., et al. A new secreted protein that binds to Wnt proteins and inhibits their activities. Nature 398, 431-436 (1999).
36. Niu, J., et al. Aberrant oligodendroglial-vascular interactions disrupt the blood-brain barrier, triggering CNS inflammation. Nature neuroscience 22, 709-718 (2019).
37. Gregório, S.P., et al. Polymorphisms in genes involved in neurodevelopment may be associated with altered brain morphology in schizophrenia: preliminary evidence. Psychiatry research 165, 1-9 (2009).
38. Peng, Y., Xu, Y. & Cui, D. Wnt signaling pathway in schizophrenia. CNS & neurological disorders drug targets 13, 755-764 (2014).
39. Park, M. & Shen, K. WNTs in synapse formation and neuronal circuitry. The EMBO journal 31, 2697-2704 (2012).
40. Voloshanenko, O., et al. β-catenin-independent regulation of Wnt target genes by RoR2 and ATF2/ATF4 in colon cancer cells. Scientific reports 8, 3178 (2018).
41. Hall, A.C., Lucas, F.R. & Salinas, P.C. Axonal remodeling and synaptic differentiation in the cerebellum is regulated by WNT-7a signaling. Cell 100, 525-535 (2000).
42. Cerpa, W., et al. Wnt-7a modulates the synaptic vesicle cycle and synaptic transmission in hippocampal neurons. J Biol Chem 283, 5918-5927 (2008).
43. Ciani, L., et al. Wnt7a signaling promotes dendritic spine growth and synaptic strength through Ca²⁺/Calmodulin-dependent protein kinase II. Proc Natl Acad Sci U S A 108, 10732-10737 (2011).
44. Simonetti, M., et al. Wnt-Fzd signaling sensitizes peripheral sensory neurons via distinct noncanonical pathways. Neuron 83, 104-121 (2014).
45. Chen, T.J., et al. In Vivo Regulation of Oligodendrocyte Precursor Cell Proliferation and Differentiation by the AMPA-Receptor Subunit GluA2. Cell Rep 25, 852-861 e857 (2018).
46. Marissal, T., et al. Restoring wild-type-like CA1 network dynamics and behavior during adulthood in a mouse model of schizophrenia. Nature neuroscience 21, 1412-1420 (2018).
47. Hollis, C. & Rapoport, J. Child and Adolescent Schizophrenia. in Schizophrenia 24-46 (2010).
48. McGrath, J., Saha, S., Chant, D. & Welham, J. Schizophrenia: a concise overview of incidence, prevalence, and mortality. Epidemiologic reviews 30, 67-76 (2008).
49. Grydeland, H., et al. Waves of Maturation and Senescence in Micro-structural MRI Markers of Human Cortical Myelination over the Lifespan. Cerebral cortex (New York, N.Y. : 1991) 29, 1369-1381 (2019).
50. Miller, D.J., et al. Prolonged myelination in human neocortical evolution. Proc Natl Acad Sci U S A 109, 16480-16485 (2012).
51. Fancy, S.P., et al. Dysregulation of the Wnt pathway inhibits timely myelination and remyelination in the mammalian CNS. Genes Dev 23, 1571-1585 (2009).
52. Feigenson, K., Reid, M., See, J., Crenshaw, E.B., 3rd & Grinspan, J.B. Wnt signaling is sufficient to perturb oligodendrocyte maturation. Mol Cell Neurosci 42, 255-265 (2009).
53. Falcao, A.M., et al. Disease-specific oligodendrocyte lineage cells arise in multiple sclerosis. Nat Med 24, 1837-1844 (2018).
54. Kirby, L., et al. Oligodendrocyte precursor cells present antigen and are cytotoxic targets in inflammatory demyelination. Nature communications 10, 3887 (2019).
55. Birey, F., et al. Genetic and Stress-Induced Loss of NG2 Glia Triggers Emergence of Depressive-like Behaviors through Reduced Secretion of FGF2. Neuron 88, 941-956 (2015).
56. Wang, Y., et al. Reduced Oligodendrocyte Precursor Cell Impairs Astrocytic Development in Early Life Stress. Advanced science (Weinheim, Baden-Wurttemberg, Germany) 8, e2101181 (2021).
57. Jensen, J., Brennesvik, E.O., Lai, Y.C. & Shepherd, P.R. GSK-3beta regulation in skeletal muscles by adrenaline and insulin: evidence that PKA and PKB regulate different pools of GSK-3. Cellular signalling 19, 204-210 (2007).
58. Hallmayer, J. Getting our AKT together in schizophrenia? Nature genetics 36, 115-116 (2004).
59. Miyoshi, K., et al. Disrupted-In-Schizophrenia 1, a candidate gene for schizophrenia, participates in neurite outgrowth. Mol Psychiatry 8, 685-694 (2003).
60. Tropea, D., Hardingham, N., Millar, K. & Fox, K. Mechanisms underlying the role of DISC1 in synaptic plasticity. The Journal of physiology 596, 2747-2771 (2018).
61. Enomoto, A., et al. Roles of disrupted-in-schizophrenia 1-interacting protein girdin in postnatal development of the dentate gyrus. Neuron 63, 774-787 (2009).
62. Sugden, P.H., Fuller, S.J., Weiss, S.C. & Clerk, A. Glycogen synthase kinase 3 (GSK3) in the heart: a point of integration in hypertrophic signalling and a therapeutic target? A critical analysis. British journal of pharmacology 153 Suppl 1, S137-153 (2008).
63. Zhu, X., et al. Age-dependent fate and lineage restriction of single NG2 cells. Development (Cambridge, England) 138, 745-753 (2011).
64. Doerflinger, N.H., Macklin, W.B. & Popko, B. Inducible site-specific recombination in myelinating cells. Genesis 35, 63-72 (2003).
65. Kang, S.H., Fukaya, M., Yang, J.K., Rothstein, J.D. & Bergles, D.E. NG2+ CNS glial progenitors remain committed to the oligodendrocyte lineage in postnatal life and following neurodegeneration. Neuron 68, 668-681 (2010).
66. Schüller, U., et al. Acquisition of granule neuron precursor identity is a critical determinant of progenitor cell competence to form Shh-induced medulloblastoma. Cancer cell 14, 123-134 (2008).
67. Robanus-Maandag, E.C., et al. A new conditional Apc-mutant mouse model for colorectal cancer. Carcinogenesis 31, 946-952 (2010).
68. Willott, J.F., Carlson, S. & Chen, H. Prepulse inhibition of the startle response in mice: relationship to hearing loss and auditory system plasticity. Behavioral neuroscience 108, 703-713 (1994).
69. Yamashita, M., et al. Impaired cliff avoidance reaction in dopamine transporter knockout mice. Psychopharmacology 227, 741-749 (2013).
70. Han, Q.Q., et al. Differential GR Expression and Translocation in the Hippocampus Mediates Susceptibility vs. Resilience to Chronic Social Defeat Stress. Frontiers in neuroscience 11, 287 (2017).
71. Yang, Y., et al. Ketamine blocks bursting in the lateral habenula to rapidly relieve depression. Nature 554, 317-322 (2018).
72. Ferreira, T.A., et al. Neuronal morphometry directly from bitmap images. Nature methods 11, 982-984 (2014).