1 Worobey, M. & Holmes, E. C. Evolutionary aspects of recombination in RNA viruses. J Gen Virol 80 ( Pt 10), 2535-2543, doi:10.1099/0022-1317-80-10-2535 (1999).
2 Simon-Loriere, E. & Holmes, E. C. Why do RNA viruses recombine? Nat Rev Microbiol 9, 617-626, doi:10.1038/nrmicro2614 (2011).
3 WHO. Tracking SARS-CoV-2 variants, <https://www.who.int/en/activities/tracking-SARS-CoV-2-variants/> (2022).
4 Viana, R. et al. Rapid epidemic expansion of the SARS-CoV-2 Omicron variant in southern Africa. Nature, doi:10.1038/s41586-022-04411-y (2022).
5 Plante, J. A. et al. Spike mutation D614G alters SARS-CoV-2 fitness. Nature 592, 116-121, doi:10.1038/s41586-020-2895-3 (2021).
6 Saito, A. et al. Enhanced fusogenicity and pathogenicity of SARS-CoV-2 Delta P681R mutation. Nature 602, 300-306, doi:10.1038/s41586-021-04266-9 (2022).
7 Syed, A. M. et al. Rapid assessment of SARS-CoV-2-evolved variants using virus-like particles. Science 374, 1626-1632, doi:10.1126/science.abl6184 (2021).
8 Boni, M. F. et al. Evolutionary origins of the SARS-CoV-2 sarbecovirus lineage responsible for the COVID-19 pandemic. Nat Microbiol 5, 1408-1417, doi:10.1038/s41564-020-0771-4 (2020).
9 Lytras, S. et al. Exploring the Natural Origins of SARS-CoV-2 in the Light of Recombination. Genome Biol Evol 14, doi:10.1093/gbe/evac018 (2022).
10 Gutierrez, B. et al. Emergence and widespread circulation of a recombinant SARS-CoV-2 lineage in North America. medRxiv, 2021.2011.2019.21266601, doi:10.1101/2021.11.19.21266601 (2021).
11 Jackson, B. et al. Generation and transmission of interlineage recombinants in the SARS-CoV-2 pandemic. Cell 184, 5179-5188 e5178, doi:10.1016/j.cell.2021.08.014 (2021).
12 VanInsberghe, D., Neish, A. S., Lowen, A. C. & Koelle, K. Recombinant SARS-CoV-2 genomes circulated at low levels over the first year of the pandemic. Virus Evolution 7, veab059, doi:10.1093/ve/veab059 (2021).
13 Wertheim, J. O. et al. Capturing intrahost recombination of SARS-CoV-2 during superinfection with Alpha and Epsilon variants in New York City. medRxiv, 2022.2001.2018.22269300, doi:10.1101/2022.01.18.22269300 (2022).
14 O'Toole, A. et al. Assignment of epidemiological lineages in an emerging pandemic using the pangolin tool. Virus Evol 7, veab064, doi:10.1093/ve/veab064 (2021).
15 Aksamentov, I., Roemer, C., Hodcroft, E. B. & Neher, R. A. Nextclade: clade assignment, mutation calling and quality control for viral genomes. Journal of Open Source Software 6, 3773, doi:10.21105/joss.03773 (2021).
16 Nguyen, S. V. (2022).
17 ECDC. SARS-CoV-2 variants of concern as of 24 March 2022, <https://www.ecdc.europa.eu/en/covid-19/variants-concern> (2022).
18 Maisa, A. et al. First cases of Omicron in France are exhibiting mild symptoms, November 2021-January 2022. Infect Dis Now, doi:10.1016/j.idnow.2022.02.003 (2022).
19 Elbe, S. & Buckland-Merrett, G. Data, disease and diplomacy: GISAID's innovative contribution to global health. Glob Chall 1, 33-46, doi:10.1002/gch2.1018 (2017).
20 Simon-Loriere, E., Rossolillo, P. & Negroni, M. RNA structures, genomic organization and selection of recombinant HIV. RNA Biol 8, 280-286, doi:10.4161/rna.8.2.15193 (2011).
21 Muslin, C., Mac Kain, A., Bessaud, M., Blondel, B. & Delpeyroux, F. Recombination in Enteroviruses, a Multi-Step Modular Evolutionary Process. Viruses 11, doi:10.3390/v11090859 (2019).
22 Simon-Loriere, E. & Schwartz, O. Towards SARS-CoV-2 serotypes? Nat Rev Microbiol 20, 187-188, doi:10.1038/s41579-022-00708-x (2022).
23 Cao, Y. et al. Omicron escapes the majority of existing SARS-CoV-2 neutralizing antibodies. Nature, doi:10.1038/s41586-021-04385-3 (2021).
24 Planas, D. et al. Considerable escape of SARS-CoV-2 Omicron to antibody neutralization. Nature, doi:https://doi.org/10.1038/d41586-021-03827-2 (2021).
25 Touret, F., Baronti, C., Bouzidi, H. S. & de Lamballerie, X. In vitro evaluation of therapeutic antibodies against a SARS-CoV-2 Omicron B.1.1.529 isolate. Sci Rep 12, 4683, doi:10.1038/s41598-022-08559-5 (2022).
26 Ulloa, A. C., Buchan, S. A., Daneman, N. & Brown, K. A. Estimates of SARS-CoV-2 Omicron Variant Severity in Ontario, Canada. JAMA, doi:10.1001/jama.2022.2274 (2022).
27 Wolter, N. et al. Early assessment of the clinical severity of the SARS-CoV-2 omicron variant in South Africa: a data linkage study. Lancet 399, 437-446, doi:10.1016/S0140-6736(22)00017-4 (2022).
28 Shuai, H. et al. Attenuated replication and pathogenicity of SARS-CoV-2 B.1.1.529 Omicron. Nature, doi:10.1038/s41586-022-04442-5 (2022).
29 Halfmann, P. J. et al. SARS-CoV-2 Omicron virus causes attenuated disease in mice and hamsters. Nature, doi:10.1038/s41586-022-04441-6 (2022).
30 Tyson, J. R. et al. Improvements to the ARTIC multiplex PCR method for SARS-CoV-2 genome sequencing using nanopore. bioRxiv, 2020.2009.2004.283077, doi:10.1101/2020.09.04.283077 (2020).
31 Matranga, C. B. et al. Enhanced methods for unbiased deep sequencing of Lassa and Ebola RNA viruses from clinical and biological samples. Genome Biol 15, 519, doi:10.1186/PREACCEPT-1698056557139770 (2014).
32 Grubaugh, N. D. et al. An amplicon-based sequencing framework for accurately measuring intrahost virus diversity using PrimalSeq and iVar. Genome Biol 20, 8, doi:10.1186/s13059-018-1618-7 (2019).
33 Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078-2079, doi:10.1093/bioinformatics/btp352 (2009).
34 Hadfield, J. et al. Nextstrain: real-time tracking of pathogen evolution. Bioinformatics 34, 4121-4123, doi:10.1093/bioinformatics/bty407 (2018).
35 Hoang, D. T., Chernomor, O., von Haeseler, A., Minh, B. Q. & Vinh, L. S. UFBoot2: Improving the Ultrafast Bootstrap Approximation. Mol Biol Evol 35, 518-522, doi:10.1093/molbev/msx281 (2018).
36 Minh, B. Q. et al. IQ-TREE 2: New Models and Efficient Methods for Phylogenetic Inference in the Genomic Era. Mol Biol Evol 37, 1530-1534, doi:10.1093/molbev/msaa015 (2020).
37 Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K. F., von Haeseler, A. & Jermiin, L. S. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods 14, 587-589, doi:10.1038/nmeth.4285 (2017).
38 Martin, D. P. et al. RDP5: A computer program for analysing recombination in, and removing signals of recombination from, nucleotide sequence datasets. Virus Evol, veaa087, doi:10.1093/ve/veaa087 (2020).
39 Lam, H. M., Ratmann, O. & Boni, M. F. Improved Algorithmic Complexity for the 3SEQ Recombination Detection Algorithm. Mol Biol Evol 35, 247-251, doi:10.1093/molbev/msx263 (2018).
40 Lescure, F. X. et al. Clinical and virological data of the first cases of COVID-19 in Europe: a case series. Lancet Infect Dis 20, 697-706, doi:10.1016/S1473-3099(20)30200-0 (2020).
41 Crawford, K. H. D. et al. Protocol and Reagents for Pseudotyping Lentiviral Particles with SARS-CoV-2 Spike Protein for Neutralization Assays. Viruses 12, doi:10.3390/v12050513 (2020).
42 Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754-1760, doi:10.1093/bioinformatics/btp324 (2009).
43 Dezordi, F. Z. et al. ViralFlow: A Versatile Automated Workflow for SARS-CoV-2 Genome Assembly, Lineage Assignment, Mutations and Intrahost Variant Detection. Viruses 14, doi:10.3390/v14020217 (2022).
44 Lemoine, F. & Gascuel, O. Gotree/Goalign: toolkit and Go API to facilitate the development of phylogenetic workflows. NAR Genom Bioinform 3, lqab075, doi:10.1093/nargab/lqab075 (2021).